Goldilocks fluctuations: Dynamic constraints on loop formation in scale-free transport networks
submitted (2023).
The slow viscous flow around doubly-periodic arrays of infinite slender cylinders
submitted (2023). [arxiv]
Culinary fluid mechanics and other currents in food science
accepted, Rev. Mod. Phys. (2023). [arxiv]
Pychastic: Precise Brownian Dynamics using Taylor-Ito integrators in Python
SciPost Physics Codebases 11 (2023). [arxiv] [pdf] [doi:10.21468/SciPostPhysCodeb.11] [Github codes]
DNA supercoiling-induced shapes alter minicircle hydrodynamic properties
Nucl. Acids Res. (2023). [biorxiv] [pdf] [doi:10.1093/nar/gkad183]
( * = equal co-corresponding authors)
Kitchen flows: Making science more accessible, affordable, and curiosity driven
Phys. Fluids, 34, 110401 (2022) [pdf] [doi:10.1063/5.0131565]
Viscous thread falling on a spinning surface
Symmetry 14, 1550 (2022). [pdf] [doi:10.3390/sym14081550]
On the effect of morphology and particle-wall interaction on colloidal near-wall dynamics
Soft Matter 17, 10301 (2021). [pdf] [doi:10.1039/D1SM01191J]
Featured on the cover of the Volume 45 of Soft Matter [cover pdf]
Rechargeable self-assembled droplet microswimmers driven by surface phase transitions
Nat. Phys. 17, 1050-1055 (2021). [pdf] [arxiv] [doi:10.1038/s41567-021-01291-3]
Press releases: [Nat Phys news & views] [FUW PL] [UW PL] [PAP PL] [FUW EN] [UW EN] [EurekAlert EN] [AlphaGalileo EN]
Commentary by S. Ramananarivo: Nat. Phys. 17, 987 (2021)
Featured on the cover of the September 2021 issue
The Bank of Swimming Organisms at the Micron Scale (BOSO-Micro)
PLoS ONE 16, e0252291 (2021).
[pdf] [arxiv] [doi:10.1371/journal.pone.0252291]
Stability of sedimenting flexible loops
J. Fluid Mech. 919, A14 (2021).
[pdf] [arxiv] [doi:10.1017/jfm.2021.350]
Hydrodynamic effects in the capture of rod-like molecules by a nanopore
J. Phys.: Condens. Matter 33, 104005 (2021). [pdf] [arxiv] [doi:10.1088/1361-648X/abd11b]
Towards an analytical description of active microswimmers in clean and in surfactant-covered drops
Eur. Phys. J. E 43, 58 (2020). [pdf] [arxiv] [doi:10.1140/epje/i2020-11980-9]
Selected as a [cover] of the September issue and featured on [EPJE news website].
Tuning the upstream swimming of microrobots by shape and cargo size
Phys. Rev. Applied 14, 024071 (2020). [pdf] [arxiv] [doi:10.1103/PhysRevApplied.14.024071]
( * = equal author contributions)
Light-switchable propulsion of active particles with reversible interactions
Nat. Commun. 11, 2628 (2020). [pdf] [arxiv] [doi:10.1038/s41467-020-15764-1]
Press release: [PL] [EN]
Dynamics of a microswimmer-microplatelet composite
Phys. Fluids 32, 021902 (2020). [pdf] [arxiv] [doi:10.1063/1.5142054] [arxiv]
Swimming eukaryotic microorganisms exhibit a universal speed distribution
eLife, 8, e44907 (2019). [pdf] [arxiv] [doi:10.7554/eLife.44907] [arxiv] [promotional cover]
Hydrodynamic coupling and rotational mobilities near planar elastic membranes
J. Chem. Phys. 149, 014901 (2018).
[pdf]
[doi:10.1063/1.5032304]
Featured in JCP Editors' Choice 2018
State diagram of a three-sphere microswimmer in a channel
J. Phys.: Condens. Matter 30, 254004 (2018).
[pdf]
[arxiv]
[doi:10.1088/1361-648X/aac470]
Swimming trajectories of a three-sphere microswimmer near a wall
J. Chem. Phys. 148, 134904 (2018).
[pdf]
[doi:10.1063/1.5021027]
[arxiv]
Autophoretic motion in three dimensions
Soft Matter 14, 3304-3314 (2018).
[pdf]
[doi:10.1039/c8sm00194d]
[arxiv]
Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube
Phys. Fluids 29, 111901 (2017).
[pdf]
[doi:10.1063/1.5002192]
[arxiv]
Selected as an Editor's Pick 2017
Slow rotation of a spherical particle inside an elastic tube
Acta Mech. 229, 149-171 (2017).
[pdf]
[doi:10.1007/s00707-017-1965-6]
[arxiv]
Hydrodynamic mobility of a solid particle nearby a spherical elastic membrane. II. Asymmetric motion
Phys. Rev. E 95, 053117 (2017).
[pdf]
[doi:10.1103/PhysRevE.95.053117]
[arxiv]
The non-Gaussian tops and tails of diffusing boomerangs
Soft Matter 13, 2977 (2017).
[pdf]
[doi:10.1039/C6SM02649D]
[arxiv]
( * = equal author contributions)
Mobility of an axisymmetric particle near an elastic interface
J. Fluid Mech. 811, 210 (2017).
[pdf]
[doi:10.1017/jfm.2016.739]
[arxiv]
( * = equal author contributions)
Near-wall diffusion tensor of an axisymmetric colloidal particle,
J. Chem. Phys. 145 034904, (2016).
[pdf]
[doi:10.1063/1.4958727]
[arxiv]
Phoretic flow induced by asymmetric confinement,
J. Fluid Mech. 799, R5 (2016).
[pdf]
[doi:10.1017/jfm.2016.408]
[arxiv]
Colloidal hydrodynamics and interfacial effects,
in: Soft Matter at Aqueous Interfaces, P. R. Lang and Y. Liu (Eds), Lecture Notes in Physics, Vol. 917, 313-386, Springer (2016), [draft pdf] [doi:10.1007/978-3-319-24502-7_10]
Near-Wall dynamics of concentrated hard-sphere suspensions: comparison of evanescent wave DLS experiments, virial approximation and simulations,
Soft Matter 11, 7316 (2015). [pdf] [doi:10.1039/C5SM01624J] [arxiv]
Translational and rotational near-wall diffusion of spherical colloids studied by evanescent wave scattering,
Soft Matter 10 , 4312 (2014), [pdf] [doi:10.1039/C4SM00148F]
Rotational diffusion of spherical colloids close to a wall,
Phys. Rev. Lett. 109 , 098305 (2012), DOI: [pdf] [doi:10.1103/PhysRevLett.112.068103]
One-particle correlation function in evanescent wave dynamic light scattering,
J. Chem. Phys. 136 , 204704 (2012), [pdf] [doi:10.1063/1.4720069]
M. Lisicki, Postępy Fizyki, 3, 2020. [Postępy Fizyki] [pdf]
M. Lisicki, Postępy Fizyki, 1, 2019. [pdf]
M. Lisicki, SPP Reviews, 2016. [html]
M. Lisicki, Delta, 7, 2013. [html]
M. Lisicki, Delta, 10, 2010. [html]
M. Lisicki, Delta, 3, 2010. [html]
M. Lisicki, Delta, 10, 2008. [pdf]
Simplicity in complexity – TEDx Warsaw Women talk, November 2020.
O obrotach w miodzie, czyli jak pływają bakterie i algi? - film popularnonaukowy na Festiwal Nauki, wrzesień 2020.
Mechanika płynów w kuchni i łazience – film z serii Uniwersytet Uczniom, maj 2020.
Evanescent wave dynamic light scattering by optically anisotropic Brownian particles,
University of Warsaw, 2015.
(A) Four approaches to hydrodynamic Green's functions - the Oseen tensors.
M. Lisicki, [arxiv.org: 1312.6231]
(B) Einstein - de Haas effect,
T. Bobiński, P. Dębski, M. Lisicki, K. Wójtowicz, M. Zielenkiewicz, in: Proceedings of the XVIII International Young Physicists' Tournament, Winterthur 2005.