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Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular 
significantly alter the dynamics of swimming microorganisms in viscous media. Surface-
related effects on the motility of microswimmers can lead to important consequences in a large 
number of biological systems, such as biofilm formation, bacterial adhesion and microbial 
activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram 
of a three-sphere microswimmer under channel confinement in a slit geometry and fully 
characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-
type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers 
and pullers may further perform a gliding motion and maintain a stable navigation along 
the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork 
bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel 
height while two new stable limit cycles or fixed points that are symmetrically disposed with 
respect to the channel mid-height emerge. Additionally, we show that an accurate description 
of the averaged swimming velocity and rotation rate in a channel can be captured analytically 
using the method of hydrodynamic images, provided that the swimmer size is much smaller 
than the channel height.

Keywords: microswimmer, biological fluid dynamics, low-Reynolds-number hydrodynamics, 
swimming
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1. Introduction

Microorganisms, particularly bacteria, constitute the bulk 
of the biomass on Earth and outnumber any other creatures. 
Despite their vast biological diversity and specific interac-
tion with their environment, the physics of microscale fluid 
dynamics provides a unifying framework of the understanding 
of some aspects of their behavior [1–4]. Swimming on the 
microscale is conceptually very different from the everyday 
macroscale experience [5–7]. Since the typical sizes and 
velocities of microswimmers are of the order of microns and 
microns per second, the Reynolds number characterizing the 
flow is Re ≪ 1. In this case, inertial effects can be disregarded 
compared to viscous effects in flow, and the motion of the 
fluid is described by linear Stokes hydrodynamics [8, 9]. This 
has a pronounced effect on the physiology and swimming 
strategies of microswimmers [10, 11] which have to comply 
to the limitations imposed by the time reversibility of Stokes 
flows, termed the scallop theorem by Purcell [1].

One of the ways to overcome this barrier is to perform non-
reciprocal swimming strokes. This can be achieved in systems 
of artificial biomimetic swimmers by introducing only few 
degrees of freedom, sufficient to gain propulsion but simplistic 
enough to remain analytically tractable. A well-known model 
example is the three-sphere swimmer designed by Najafi 
and Golestanian [12]. It encompasses three aligned spheres 
the mutual distance of which can be varied periodically in 
a controlled way. This guarantees the breaking of kinematic 
reversibility and leads to net translation along the axis of the 
body [13–17]. The strength of this design lies in the possible 
experimental realizations involving colloids trapped in optical 
tweezers [18, 19]. Similar bead-model designs have been pro-
posed involving elastic deformations of one or both of the arms  
[20–27], non-collinear conformations leading to rotational 
motion [28–32], or new models with complex swimmer bodies 
and external propulsion forces [33, 34]. A simple model 
for free-swimming animalcules composed of beads, sub-
ject to periodic forces has further been considered [20, 35]. 
Fascinating spatiotemporal patterns and unusual macroscopic 
rheological signatures arise from the interaction of numerous 
microswimmers, including the onset of collective and cohe-
sive motion [36–40], emergence of dynamic clusters [41, 42], 
laning [43–46] and wave patterns [47–50], motility-induced 
phase separation [51–55] and active turbulence [56–62].

One of the main challenges of microfluidics has been to 
design and control the motion of fluids in microchannels, 
where the effects of confinement dominate the dynamics  
[63, 64]. The long-ranged nature of hydrodynamic interactions 
in low-Reynolds-number flows under geometrical confinement 
significantly influences the dynamics of suspended particles 
or organisms [65]. Close confinement, e.g. in channels, can 
lead to a drastic increase in the range of interactions [66, 67]. 
Thus surface effects have to be accounted for when designing 
microfluidic systems [68, 69] and affect translational and rota-
tional mobilities of colloidal particles diffusing near bounda-
ries [70–77]. In living systems, walls have been demonstrated 
to drastically change the trajectories of swimming bacteria, 
such as E. coli [78–87], or algae [88, 89]. As seen already in 

simplistic models involving two linked spheres near a wall 
[90], a surprisingly rich behavior emerges, with the presence 
of trapping states, escape from the wall and non-trivial steady 
trajectories above the surface. This behavior has also been seen 
in an analogous system of self-phoretic active Janus particles 
[91–99], where a complex phase diagram has been found, 
based on the initial orientation and the distance separating the 
swimmer from the wall. Additional invest igations have con-
sidered the hydrodynamic interactions between two squirmers 
near a boundary [100], the dynamics of active particles near 
a fluid interface [101–103], swimming in a confining micro-
channel [104–115], inside a spherical cavity [116–118], near 
a curved obstacle [119, 120] and in a liquid film [121–123]. 
Meanwhile, other studies have considered the low-Reynolds-  
number locomotion in non-Newtonian fluids [124–132] where 
boundaries have been found to drastically alter the swimming 
trajectories of microswimmers [133–135].

The analysis of dynamics of a single model swimmer 
interacting with a boundary is a crucial first step towards 
the understanding of complex collective processes involving 
living systems close to boundaries. In this paper, we address 
theoretically and numerically the low-Reynolds-number loco-
motion of a linear three-sphere microswimmer in a channel 
between two parallel walls. We show that the swimmer flow 
signature (pusher, puller, neutral swimmer) determines its 
general behavior and explore the resulting phase diagrams 
discerning between the gliding, sliding and trapping modes 
of motion.

The remainder of the paper is organized as follows. In sec-
tion 2, we introduce the model microswimmer and derive the 
swimming kinematics in a channel between two planar walls 
in the framework of low-Reynolds-number hydrodynamics. 
We then present in section  3 a state diagram representing 
the various swimming scenarios for a neutral three-sphere 
swimmer and introduce a simplified analytical model valid 
in the limit where the swimmer length is small compared to 
the channel height. We discuss in section 4 the behavior of 
puller- and pusher-type swimmers, finding that the former 
can maintain a stable navigation along the channel, while 
the latter inevitably ends up trapped at the channel walls. We 
then examine the swimming stability about the mid-plane and 
show that a supercritical pitchfork bifurcation occurs beyond 
a certain transition channel height at which swimming at the 
centerline becomes unstable. Concluding remarks and sum-
mary are provided in section 5 and technical details are con-
tained in appendices A through D.

2. Theoretical model

2.1. Hydrodynamics background

In low-Reynolds-number hydrodynamics, the flow is vis-
cosity-dominated and the fluid motion is governed by the 
steady Stokes equations [8]

η∇2 v(r)−∇P(r) + f B(r) = 0 , (1a)

∇ · v(r) = 0 , (1b)
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where η denotes the fluid dynamic viscosity, and v(r) and P(r) 
are respectively the fluid velocity and pressure fields at posi-
tion r = (x, y, z) due to a bulk force density f B(r) acting on 
the fluid by the immersed objects.

For a point-force singularity f B(r) = fδ(r − r0) acting at 
position r0 in an otherwise quiescent fluid, the solution for the 
induced velocity field and pressure is expressed in terms of the 
Green’s functions

vi(r) = Fij(r, r0 ) fj , P(r) = Pj(r, r0 ) fj , (2)

where repeated indices are summed over following Einstein’s 
convention. In the absence of confining boundaries, the funda-
mental solution is the Oseen tensor, F = (8πηs)−1(I + ss/s2) 
with s = r − r0 and s = |s|. The solution for an arbitrary force 
distribution can then be constructed by linear superposition.

The Green’s functions in a channel between two par-
allel planar walls was first derived by Liron and Mochon 
[136] using the image technique and a Fourier transform. 
In appendix A, we present a modified approach based on 
decomposing the Fourier-transformed vector fields into their 
longitudinal, transverse, and normal components. Upon 
inverse Fourier transformation, the Green’s functions can 
then be expressed in terms of Bessel integrals of the first kind. 
Alternatively, following the method by Mathijssen et al [121], 
the Green’s function may be expressed as an infinite series 
of image reflections. In appendix B we derive the recursion 
relations that yield the successive image systems, and provide 
explicit expressions for these. Truncation of this series can be 
computationally advantageous, provided a suitable number of 
images is chosen. In the limiting case of an infinitely wide 
channel, both Green’s functions reduce to the familiar Oseen 
expressions. The image reflection method has previously been 
employed to address the behavior of swimming bacteria near 
a hard surface [81] or an air-fluid interface [137].

2.2. Swimmer dynamics

In the following, we consider the motion of a neutrally 
buoyant swimmer in a fluid bounded by two parallel planar 
walls infinitely extended in the planes z  =  0 and z  =  H. As 
a model swimmer, we employ the linear three-sphere micro-
swimmer originally proposed by Najafi and Golestanian [12]. 
The simplicity of the model provides a handy framework 
that allows a direct investigation of many aspects in low-
Reynolds-number locomotion. The swimmer is composed 
of three spheres of radii a1 (central), a2 (front), and a3 (rear) 
arranged colinearly via dragless rods. The periodic changes in 
the mutual distances between the spheres are set to perform 
a non-reversible sequence leading to propulsive motion (see 
figure 1 for an illustration of the model swimmer moving in a 
channel between two walls.)

The instantaneous orientation of the swimmer relative to 
the channel walls is described by the two-dimensional unit 
vector t̂ = cos θ êx + sin θ êz directed along the swimming 
axis. Under the action of the internal forces acting between 
the spheres, actuated, e.g. by embedded motors, the lengths 
of the rods connecting the spheres change periodically around 
mean values. Specifically,

r1 − r3 = h(t)̂t , r2 − r1 = g(t)̂t , (3)

where h(t) and g(t) are periodic functions prescribing the 
instantaneous mutual distances between adjacent spheres, 
which we choose to be harmonic,

g(t) = L1 + u 10 cos (ωt) , (4a)

h(t) = L2 + u 20 cos (ωt + δ) , (4b)

where ω is the oscillation frequency of motion and δ ∈ [0, 2π) 
is a phase shift necessary for the symmetry breaking. Here, 
L1 and L2 stand for the mean arm length connecting the 
central sphere to the front and rear spheres, respectively. In 
addition, u10 and u20 are the corresponding amplitudes of 
oscillation. Unless otherwise stated, we will consider con-
sistently throughout this manuscript that L1 = L2 =: L and 
u10 = u20 =: u0. We further mention that the sphere radii and 
the oscillation amplitudes should be chosen small enough 
in such a way that the inequalities a1 + a2 + 2|u0| ≪ L and 
a1 + a3 + 2|u0| ≪ L remain satisfied. Moreover, we scale 
from now on all the lengths by L and the times by ω−1.

We now briefly outline the main steps involved in the deri-
vation of the swimming velocity and inclination. In Stokes 
hydrodynamics, the suspended particles take instantaneously 
on the velocity of the embedding flow since inertial effects 
are negligible. Additionally, the translational velocities of the 
three spheres are linearly related to the internal forces acting 
on them via

Vγ =
d r
d t

=
3∑

λ=1

µγλ · fλ , (5)

where µγλ denotes the hydrodynamic mobility tensor bridging 
between the translational velocity of sphere γ and the force 
exerted on sphere λ. The mobility tensor is symmetric posi-
tive definite [138] and encompasses the effect of many-body 
hydrodynamics interactions. In this work, however, for the 
sake of simplicity we consider only contributions stemming 
from the hydrodynamic interaction between pairs of particles 

Figure 1. Illustration of a linear three-sphere microswimmer 
moving in a channel of constant height H. The swimmer is 
directed along the unit vector ̂ t forming an angle θ relative to the 
horizontal direction. The central, front, and aft spheres composing 
the swimmer have different radii a1, a2, and a3, respectively. The 
instantaneous positions of the front and aft spheres relative to the 
central sphere are denoted by g and h, respectively. The vertical 
position of the swimmer is defined by the height of the central 
sphere z above the bottom wall. The fluid filling the channel is 
quiescent and characterized by a dynamic viscosity η.
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(γ ̸= λ), in addition to contributions relative to the same par-
ticle (γ = λ) designated as self-mobility functions [9].

Taking the time derivative with respect to the laboratory 
frame on both sides of equation (3) yields

V2 = V1 + ġ t̂ + gθ̇ n̂ , (6a)

V3 = V1 − ḣ t̂ − hθ̇ n̂ , (6b)

wherein dot stands for a derivative with respect to time. 
Moreover, n̂ = − sin θ êx + cos θ êz is a unit vector perpend-
icular (rotated 90 degrees anticlockwise) to the unit vector t̂. 
Accordingly, the triplet (̂ey, n̂, t̂) forms a direct orthonormal 
basis in the frame of reference associated with the swimmer.

For the determination of the unknown internal forces 
acting between the spheres, a total of six equations is required. 
By projecting equation (6) onto the orientation vector t̂, two 
scalar equations are readily obtained. Projecting these equa-
tions  onto the normal direction n̂ and eliminating the rota-
tion rate yields an additional equation. Three further scalar 
equations  are obtained by enforcing the physical constraint 
that the swimmer does not exert a net force or torque on the 
surrounding fluid. Specifically

3∑

λ=1

fλ = 0 ,
3∑

λ=1

(rλ − r0)× fλ = 0 , (7)

where  ×  stands for the cross (outer) product and r0 denotes an 
arbitrary reference point, which we choose to be the position 
of the central sphere r1. The internal forces acting between 
the spheres follow from solving the resulting system of six 
linearly independent equations using the standard substitution 
technique.

In order to investigate the swimming behavior, we choose 
to follow the trajectory of the central sphere whose velocity 
can readily be determined from (5) upon knowledge of the 
internal forces. The instantaneous rotation rate of the swimmer 
can then be calculated from

θ̇ =
1
g
(V2 − V1 ) · n̂ =

1
h
(V1 − V3 ) · n̂ . (8)

3. Swimming state diagram

3.1. Behavior near a single wall

Having outlined the general procedure for the determination 
of the equations governing the swimmer dynamics, we next 
derive approximate expressions for the swimming transla-
tional and rotational velocities. We firstly consider the lim-
iting case of an infinitely wide channel H → ∞ and derive the 
averaged equations of motion for a swimmer located at a finite 
distance above a single wall infinitely extended in the plane 
z  =  0. In addition, we restrict our attention to the particular 
case where the spheres have the same radius a as originally 
proposed in the Najafi and Golestanian design [12]. The gen-
eral case for arbitrary particle radius will be discussed in the 
following section.

The Green’s functions satisfying the no-slip boundary 
condition at an infinitely extended hard wall are expressed 
in the form of the Blake tensor [142] providing the leading-
order terms in the pair hydrodynamic interactions. Restricting 
ourselves for simplicity to the point-particle framework, the 
scaled self-mobility functions for a sphere located at height z 
above a rigid wall are given up to O

(
(a/z) 3

)
 by [8]

µ∥

µ0
= 1 − 9

16
a
z

,
µ⊥
µ0

= 1 − 9
8

a
z

, (9)

for the translational motion parallel and perpendicular to 
the wall, respectively. Here µ0 = (6πηa)−1 denotes the 
usual bulk mobility given by the Stokes law. (In our simu-
lations, however, we use more detailed predictions obtained 
by the method of reflections incorporating nine images, and 
described in detail in appendix B.)

By performing a Taylor series expansion up to O(a3) of the 
swimming velocity and rotation rate, the approximate differ-
ential equations governing the swimming dynamics above a 
single wall, averaged over one oscillation period, can be pre-
sented in the form

d x
d t

= V0 + KA(z) , (10a)

d z
d t

=
(
V0 + KB(z)

)
θ , (10b)

d θ
d t

= KC(z) , (10c)

where we have assumed small inclination angles relative to 
the horizontal direction such that sin θ ∼ θ and cos θ ∼ 1. 
Moreover,

V0 = −aK
24

(7 + 5a) (11)

is the bulk swimming speed in the absence of a boundary, and

K := ⟨gḣ− hġ⟩ = −u10 u20 sin δ = −u2
0 sin δ . (12)

Here ⟨·⟩ stands for the time-averaging operator over one full 
swimming cycle, defined by

⟨·⟩ :=
1

2 π

∫ 2 π

0
(·) d t . (13)

Evidently, a net motion over one swimming cycle occurs only 
if the phase shift δ /∈ {0,π}. In the remainder of this article, 
we take δ = π/2 for which the swimming speed is maximized.

In addition, A, B, and C are highly nonlinear functions of z 
which are explicitly provided to leading order in a in appendix 
D. In the far-field limit, in which the distance separating the 
swimmer from the wall is very large compared to the swimmer 
size (z ≫ 1), these functions up to O

(
z−5
)
 read

A(z) = − 287
1024

a2

z3 , (14a)

B(z) =
(

21
64

− 77a
256

)
a
z3 , (14b)
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C(z) =
135

1024
a(2 + 3a)

z4 . (14c)

Remarkably, the leading-order term in the wall-induced cor-
rection to the swimming velocity decays in the far field as z−3. 
Not surprisingly, the dipolar contribution (decaying as z−2) 
induced by a three-sphere microswimmer vanishes if the front 
and rear spheres have equal radii (see appendix C). As a result, 
the leading order in the velocity flow field possesses a quad-
rupolar flow structure that decays as inverse cube of distance. 
Approximate swimming trajectories are readily obtained by 
integrating equation (10) for given initial orientation and dis-
tance from the wall.

3.2. Approximate swimming trajectories in a channel

We next shift our attention to the swimming motion in a 
channel bounded by two parallel infinitely extended walls. As 
already pointed out, an accurate description of the channel-
mediated hydrodynamic interactions requires the use of the 
Green’s functions that satisfy the no-slip boundary condi-
tions at both walls simultaneously. This approach, however, 
involves improper (infinite) integrals whose numerical evalu-
ation at every time step is computationally expensive. In order 
to overcome this difficulty, we use as an alternative frame-
work the successive image reflection technique. The latter 
consists of generating an infinite series of images containing 
Stokeslets and higher-order derivatives that satisfy the no-slip 
boundary conditions on both walls asymptotically. Further 
technical details on the derivation of the flow field using mul-
tiple reflections are provided in appendix B. Throughout this 
work, a total of eight reflections is consistently employed for 
the numerical evaluation of the Green’s functions.

In order to proceed analytically, we restrict ourselves for 
simplicity to the first two image systems following Oseen’s 
classical approximation [143]. This approach suggests that 
the wall-induced corrections to the hydrodynamic interactions 
between two planar parallel rigid walls could conveniently be 
approximated by superposition of the contributions stemming 
from each single wall independently. Accordingly, it follows 
from equation (10) that the averaged swimming velocities in 
a channel between two walls can adequately be approximated 
as

d x
d t

= V0 + K (A(z) + A(H − z)) ,
 

(15a)

d z
d t

=
(
V0 + K (B(z) + B(H − z))

)
θ ,

 
(15b)

d θ
d t

= K
(
C(z)− C(H − z)

)
,

 
(15c)

where again the inclination angle is assumed to vary within a 
narrow range relative to the horizontal direction.

In figure  2, we show the channel-induced corrections to 
the swimming velocities and rotation rate as functions of the 
vertical distance z for a neutral swimmer of equal sphere radii 
a  =  0.1. The simplistic superposition approximation given by 
equation (15) is shown as dashed and solid lines for channel 

heights H  =  2 and H  =  4, respectively. The corresponding 
numerical solutions obtained using a total of eight reflections 
are shown as symbols, where diamonds and squares corre-
spond to H  =  2 and H  =  4, respectively. Here we consider a 
small amplitude of oscillations u0  =  0.1.

We observe that the corrections to the swimming veloci-
ties (figure 2(a) and (b)) tend to remain about constant around 
the channel mid-height and mostly monotonically increase in 
magnitude in the proximity of the walls due to the increased 
drag exerted on the swimmer. Upon decreasing the channel 
height, the drag force resulting from the resistance of the 
channel walls and opposing the motion through the fluid 
becomes more pronounced. For instance, swimming in the 

-3

-2

-1

0

1

0 0.5 1

K
(A

(z
)+

A
(H

−
z)

)×
10

4

(a)

-8

-4

0

0 0.5 1
K

(B
(z

)+
B

(H
−

z)
)×

10
4

(b)

-1

0

1

0 0.5 1

K
(C

(z
)−

C
(H

−
z)

)×
10

4

z/H

(c)

H = 4 (Analytics)
H = 4 (Numerics)
H = 2 (Analytics)
H = 2 (Numerics)

Figure 2. (a) and (b) Channel-induced corrections to the 
translational swimming velocities along the x and z directions, 
respectively, and (c) rotation rate versus the vertical distance z 
about θ ∼ 0. The analytical expressions based on the superposition 
approximation given by equation (15) derived up to O(a3) are 
shown as dashed and solid lines for H  =  2 and H  =  4, respectively. 
Symbols are the numerically exact results obtained using a total 
of eight reflections for H  =  2 (diamonds) and H  =  4 (squares). 
Horizontal (gray) dashed lines are the corresponding bulk values. 
Here we consider a neutral swimmer with equal sphere radii a  =  0.1 
and an amplitude of arm oscillations u0  =  0.1.
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mid-plane of a channel of height H  =  2 leads to increased drag 
of about 13% relative to the bulk value, while this increase 
is found to be about 2% for H  =  4. The increase in the drag 
force for motion of arbitrary direction is mostly larger in the 
z direction than in the x direction since it is easier to move the 
fluid aside than to push it into or to squeeze it out of the gap 
between the swimmer and the channel walls.

Since the vertical velocity scales linearly with the inclina-
tion angle (see equation  (15b)), a swimmer that is initially 
aligned parallel to the walls and released from a height of van-
ishing rotation rate will undergo a purely gliding motion along 
the channel. By examining the variations of the rotation rate 
(figure 2 (c)) we observe that the evolution equations for the 
swimming trajectories display either one or three fixed points 
in the comoving frame translating parallel to the channel walls. 
The first fixed point is trivial and occurs at the channel mid-
height (z/H = 1/2) where both walls have the same effect 
on the orientation of the swimmer. For H  =  4, two nontrivial 
fixed points symmetrically placed with respect to the channel 
mid-height are reached at z/H ≃ 0.2 and z/H ≃ 0.8.

The superposition approximation is found to be in a good 
agreement with the full numerical solution along the channel. 
A small mismatch, notably for H  =  2 in the normal velocity 
(figure 2 (b)), is a drawback of the approximations pro-
posed here. A good estimate of the swimming trajectories in 
a channel can therefore be made using the first two reflec-
tions provided that the swimmer size is much smaller than the 
channel height.

Figure 3 shows the state diagram displayed by a neutral 
three-sphere microswimmer of equal sphere radii, swimming 
in a channel for two different wall separations (a) H = 2 and 
(b) H = 4. The state diagram is obtained by integrating the 
full nonlinear equations  governing the swimmer dynamics 
numerically using a fourth-order Runge–Kutta scheme with 
adaptive time stepping [144]. The hydrodynamic mobility 
functions employed in the simulations are obtained using the 
method of reflections with a total of nine images, providing a 
good accuracy even at small sphere–wall distances, as com-
pared to far-field representation. A systematic comparison 
between the expressions of the self mobilities as obtained 
from the method of reflections and the exact multipole 
method [139–141] is provided in the supporting information6. 
Depending on the initial orientation and distance along the 
channel, the swimmer may be trapped by either walls (down-
ward and upward pointing triangles) or undergoes a nontrivial 
oscillatory gliding motion at a constant mean height either at 
the channel centerline (squares in figure 3 (a)) or at a mod-
erate distance near the channel wall (half-filled blue boxes in 
figure 3 (b)).

A swimmer that is initially aligned parallel to the walls 
(θ0 = 0) and released from the trivial fixed point at the channel 
mid-height (z0  =  H/2) (blue diamond) undergoes a purely 
gliding motion without oscillations. In the trapped state, the 
swimmer moves along a curved trajectory before it attains a 

hovering state during which the inclination angle approaches 
θ = −π/2 for the lower trapping and θ = π/2 for the upper 
trapping. Only trapping occurs if initially the swimmer is suf-
ficiently oriented away from the horizontal direction at varying 
extent depending upon the channel height. Figure  4 shows 
exemplary trajectories displayed by a neutral swimmer released 
from various initial heights with orientations θ0 = −0.3 (for 
the lower trapping states) and θ0 = 0.3 (for the upper trapping 
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Figure 3. State diagram illustrating the swimming scenarios 
displayed by a neutral three-sphere swimmer of equal sphere radii 
a  =  0.1 confined in a channel between two parallel planar walls for 
(a) H  =  2 and (b) H  =  4. Symbols represent the final swimming 
states for a given initial orientation and distance along the channel. 
Downward pointing triangles (red) indicate trapping near the lower 
wall whereas upward pointing triangles (green) stand for trapping 
near the upper wall. Filled boxes (blue) represent the oscillatory 
gliding state at the channel centerline while half-filled (blue) boxes 
correspond to the oscillatory gliding states near the corresponding 
wall. A (blue) diamond marks the trivial perpetual motion along the 
exact centerline of the channel. Solid lines correspond to forbidden 
situations in which one of the spheres is initially in contact with the 
channel walls. Here we take an amplitude of oscillations u0  =  0.1.

6 See supporting information at (stacks.iop.org/JPhysCM/30/254004/
mmedia) for approximate expressions of the self mobilities as obtained 
from the method of reflections in addition to a direct comparison with other 
approaches.
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states). After a transient evolution, the swimmer reorients 
itself perpendicular to the nearest wall and reaches a stable 
hovering state at a separation distance of about z ≃ 1.12. The 
final height is found to be independent of the initial inclination 
or distance from the wall in a way similar to that previously 
observed near a single boundary [145]. Physically, the hov-
ering state corresponds to the situation in which the propulsion 
forces are equilibrated by the resistive viscous forces pushing 
the swimmer away from the nearest boundary.

We show in figure 5 typical swimming trajectories in the 
lower oscillatory gliding state for a swimmer that is released 
from different initial heights along the parallel direction 
(θ0 = 0) in a channel of height H  =  4. In particular, the ampl-
itude of oscillations almost vanishes when z0/H ≃ 0.1875 for 
which the swimmer undergoes a purely gliding motion at a 
constant height. Not surprisingly, we have previously shown 
in figure  2 (c) that there exist in the comoving frame two 
nontrivial fixed points symmetrically placed relative to the 
channel centerline at z/H ≃ 0.2 and z/H ≃ 0.8 in addition 
to the trivial fixed point at the middle of the channel. As the 

initial swimming location is shifted far away from the fixed 
points, the amplitude of oscillations grows gradually before the 
swimmer ends up trapped by the nearest wall. The swimmer 
shows an analogous behavior in the upper oscillatory state 
upon making the transformation z → H − z  due to the system 
reflectional symmetry with respect to the channel mid-plane7.

4. Swimming puller versus pusher

Having analyzed in detail the swimming behavior of a neu-
tral three-sphere swimmer of equal sphere radii, we next con-
sider the more general situation and allow for differently sized 
spheres for which the swimming stroke is not time-reversal 
covariant [17]. For that purpose, we introduce the radii ratios 
r2 := a2/a1 and r3 := a3/a1 and use a to denote the radius of 
the central sphere a1. It should be noted that r2 and r3 must vary 
only in such a way that the inequalities (1 + r2)a+ 2|u 0| ≪ L 
and (1 + r3)a+ 2|u 0| ≪ L remain satisfied during a full 
swimming cycle for the above-mentioned approximations to 
be valid.

In a bulk fluid, the flow field induced by a general three-
sphere swimmer can conveniently be written in the far-field 
limit as a superposition of dipolar and quadrupolar flow fields 
(see appendix C), whose coefficients are respectively given by
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z0/H = 0.5

Figure 4. Typical swimming trajectories showing in (a) the lower 
trapping for θ0 = −0.3 and in (b) the upper trapping states for 
θ0 = 0.3 for various initial distances z0 in a channel of height 
H  =  4. In the steady state, the swimmer ends up trapped by a wall 
and attains a stable hovering state at a constant height close to that 
wall. This is why the trajectories end at a certain point.
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0.5
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z/
H

x/H

z0/H = 0.1875
z0/H = 0.25

z0/H = 0.3125

Figure 5. Exemplary swimming trajectories in the lower 
oscillatory gliding state for a separation H  =  4 between the walls. 
The swimmer is initially aligned parallel to the walls (θ0 = 0) 
and released from various initial distances z0. The amplitude 
of oscillations and frequency are strongly sensitive to the 
initial conditions. A nearly vanishing amplitude is observed for 
z0/H ≃ 0.1875 close to the stable fixed point in figure 2 (c). The 
inclination angles show an analogous oscillatory behavior around 
a zero mean value. Here we set a  =  0.1 and an amplitude of arm 
oscillation u0  =  0.1.

7 See supporting information at (stacks.iop.org/JPhysCM/30/254004/mme-
dia) for illustrative movies showing the swimming behaviors of a neutral 
three-sphere swimmer in a channel. Movie 1 illustrates the lower trapping 
state (z0/H = 0.125, θ0 = −0.3 ) shown in figure 4(a) (solid blue line). 
Movie 2 illustrates the upper trapping state (z0/H = 0.125, θ0 = 0.3 ) shown 
in figure 4(b) (solid blue line). Movie 3 shows the lower oscillatory gliding 
(z0 = 0.3125, θ0 = 0) presented in figure 5 (short-dashed blue line). For 
illustrative purposes, the sizes of the spheres are not shown in real scale in 
the movies.
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α =
3
4

r2 − r3

a
, σ =

3
56

4 (r2 + r3 )− 3
a2 , (16)

where the swimmer is termed as pusher (extensile) if α > 0 
as it then pushes out the fluid along its swimming axis, and 
as puller (contractile) if α < 0 as in that case it pulls in the 
fluid along its swimming path [2]. The swimmer studied in 
the previous section  is a neutral swimmer, because α = 0, 
and the dominant contribution to the flow-far-field thus is a 
quadrupole.

Keeping for convenience the same notation for the approx-
imated swimming velocities and rotation rate as before, 
the averaged equations  of motion of a general three-sphere 
swimmer near a single wall about the horizontal direction, can 
be presented up to O(a3) as

d x
d t

= V0 + KA(z) , (17a)

d z
d t

=
(
V0 + KB(z)

)
θ + KD(z) , (17b)

d θ
d t

= KC(z) , (17c)

where the bulk swimming velocity is now given by

V0 = a (V10 + aV20 ) . (18)

The coefficients V10 and V20 are functions of r2 and r3 only. 
They are explicitly given in appendix D. In particular, 
V10 = − 7K

24  and V20 = − 5K
24  when r2 = r3 directly leading to 

equation (11).
In the far-field limit, the generalized expressions for the 

functions A(z), B(z), and C(z) are

A(z) =
a2A23

z3 , (19a)

B(z) = a
(

B13

z3 +
aB23

z3

)
, (19b)

C(z) = a (C14 + aC24 )
1
z4 . (19c)

In addition,

D(z) = a(r3 − r2)

(
D14

z4 +
a
z2

(
D22 +

D24

z2

))
. (20)

The coefficients Aij, Bij, Cij, and Dij are provided in appendix 
D. The far-field equations (19) reduce to (14) in the particular 
case of r2 = r3.

By accounting only for the leading order in 1/z, the normal 
velocity in the flow-far field reads dz/dt = a2K(r3 − r2)D22z−2. 
For a pusher-like swimmer (r2 > r3), it follows that dz/dt < 0, 
and thus the swimmer is expected to be trapped by the bottom 
wall by noting that D22  <  0 and bearing in mind that K  <  0. 
For a puller-like swimmer, however, dz/dt > 0 leading to an 
escape from the wall. These observations are in agreement 
with previous studies indicating that a noiseless pusher swim-
ming parallel to a wall will be attracted whereas a puller will 
be repelled [146, 147]. It is worth mentioning that the dipolar 

flow signature neither emerges in the x-component of the 
swimming velocity nor in the rotation rate.

By considering only the first two image systems (superpo-
sition approximation), the generalized swimming velocities in 
a channel bounded by two walls can conveniently be approxi-
mated by

d x
d t

= V0 + K (A(z) + A(H − z)) , (21a)

d z
d t

=
(

V0 + K (B(z) + B(H − z))
)
θ

+ K (D(z)− D(H − z)) ,
 

(21b)

d θ
d t

= K
(
C(z)− C(H − z)

)
. (21c)

Explicit analytical expressions for the functions A, B, C, and 
D for a general three-sphere swimmer are rather complex and 
lengthy, and thus have not been listed here.

4.1. State diagram in a channel

Exemplary state diagrams for a general three-sphere swimmer 
in a channel of a height H  =  4 are shown in figure  6 for a 
pusher-like swimmer and in figure 7 for a puller-like swimmer. 
For the former case, we observed one general behavior for a 
large range of parameters, while we found in the latter case 
that the behavior changes qualitatively when the radius of the 
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Figure 6. State diagram of swimming behavior in a channel of 
height H  =  4, for a pusher-like swimmer with a  =  0.1 and radius 
ratios r2 = 2, r3 = 1 , using the same symbols as in figure 3. The 
pusher force-dipole hydrodynamics here lead to an amplification of 
the oscillations seen for neutral swimmers, which then moves the 
swimmer towards trapped states, as can be seen in the exemplary 
trajectories in figure 8 (a). The influence of the front-aft asymmetry 
was tested systematically by also varying the size of the larger 
front bead to r2  =  1.2, but the corresponding state diagram does not 
differ qualitatively from the one shown here. Due to the front-aft 
asymmetry of this three-sphere swimmer, the solid lines indicating 
forbidden configurations here are asymmetric.
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enlarged sphere is increased. As detailed below, both these 
types of non-neutral swimmers show qualitative differences 
to the state diagram for equal-sized spheres previously dis-
cussed in section 3.

For pusher-like swimmers, the oscillatory gliding state 
observed for neutral swimmers is destabilized (see figure 6, 

where r2 = 2, r3 = 1 ). The amplitude of any initial oscillation 
grows rapidly with time until the swimmer ceases oscillating 
to reach one of two phase-space fixed points which are sym-
metrically positioned with respect to the channel mid-height. 
After transient oscillations, the swimmer reorients itself 
towards the nearest wall and remains in a hovering state, as 
can be seen in the exemplary trajectories shown in figure 8 (a) 
for various initial heights with θ0 = 0.2.

Consequently, a pusher-like swimmer always ends up 
trapped by the channel walls with the only exception of the 
exactly symmetric perpetual motion along the centerline. 
Depending on the initial configuration, the swimmer moves 
towards either the lower or the upper phase-space fixed points. 
As before, the state diagram is symmetric with respect to 
(z0, θ0) = (H/2, 0), when ‘upper’ becomes ‘lower’ upon the 
corresponding point reflection and vice versa. We have tested 
the qualitative robustness of this state diagram by varying the 
radius of the front sphere such that r2  =  1.2, while keeping 
r3  =  1 and have found no qualitative difference between both 
cases.

For puller-like swimmers, however, the behavior depends 
strongly on the size of the enlarged aft sphere. Figure 7 (a) 
shows the swimming state diagram for r3  =  1.2 and r2  =  1 
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Figure 7. Swimming state diagram of a puller-like swimmer in a 
channel of height H  =  4, for (a) r3  =  1.2 and (b) r3  =  2, while the 
other radius ratio r2  =  1 is held constant. Symbols indicate the final 
state of the swimmer started at the corresponding initial phase space 
position. Here half-filled (blue) boxes stand for gliding states near 
the corresponding wall, and half-filled circles stand for states in 
which the swimmer slides along one of the walls. The positions of 
the filled sides (and the corresponding colors given in the legend) 
then indicate which wall the respective final swimming state is 
nearer to. Due to the front-aft asymmetry of the regarded three-
sphere swimmers, the unaccessible phase space areas here are  
again asymmetric. (a) For small r3, the swimmer either becomes 
trapped above one of the walls or glides well above/below it.  
(b) For larger r3, a swimmer can either glide or start sliding along 
the corresponding wall, thereby maintaining a constant orientation, 
but is never trapped.
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Figure 8. Typical swimming trajectories of three-sphere swimmers 
released at θ0 = 0.2 from different initial heights for (a) a pusher-
like swimmer with r2  =  1.2 and (b) for a puller-like swimmer with 
r3  =  1.2. The respective other radius ratios are all set to one.  
(a) Pusher-like-front-heavy swimmers can no longer perform 
perpetual gliding motions as any oscillation is amplified until a trapped 
state is reached. The end of the trajectories marks the final position 
in the trapped state. (b) Puller-like, aft-heavy swimmers undergo 
damping of their oscillations so that a straight motion parallel to the 
wall channels is approached in the steady state. In both cases, the 
initial configuration determines which of two symmetric phase-space 
fixed points a swimmer will approach. Here we set a  =  u0  =  0.1.
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resulting in a small dipolar contribution to the hydrodynamic 
flow field. In contrast to pusher-like swimmers, gliding states 
are here found to be generally compatible with puller hydro-
dynamics. As can be seen from typical trajectories depicted in 
figure 8 (b) for various initial heights with θ0 = 0.2, the oscil-
lations in the gliding states seem to dampen out apparently. A 
strictly horizontal motion near either the upper or bottom wall 
is approached, termed as lower gliding and upper gliding, 
respectively. As shown before for neutral swimmers, other 
configurations can lead to trapped states for relatively small 
dipolar coefficient. However, when r3 is further increased, 
e.g. r3  =  2 as shown in figure  7 (b), the  non-oscillatory 
gliding persists, but additionally trapped states cease to 
exist and new sliding states emerge. In these latter states, 
the swimmer maintains a constant non-zero orientation and 
undergoes a translational motion along the horizontal direc-
tion at a constant height. The sliding behavior emerges fol-
lowing a state in which the propulsive forces and the viscous 
forces balance each other. For a strong front-aft asymmetry, 
the swimmer reaches a fixed point in the comoving frame for 
an angle strictly less that π/2 in magnitude and undergoes 
a purely translational motion without oscillations parallel to 
the nearest wall.

As pointed out by de Graaf et al [114], the onset of the 
oscillatory behavior observed in neutral swimmers shown in 
figure 5 is attributed to the hydrodynamic quadrupole moment 
which tends to rotate the swimmer away from the nearest wall. 
Analogous persistent oscillations have been observed by Zhu 
et al [105] for a neutral squirmer moving in a capillary tube. 
In contrast, the dipolar contribution tends to attract a pusher 
toward the wall and retain a puller on the mid-channel plane. 
By combining both the quadrupolar and dipolar contributions, 
the swimmer undergoes an oscillatory motion characterized 
by growing and decaying amplitudes for a pusher- and puller-
type swimmer8.

4.2. Swimming stability in the mid-plane

In the previous section, we have shown that pusher-type swim-
mers are trapped at the walls while puller-type swimmers 
undergo a gliding or sliding motion along the channel after a 
rapid decay of their oscillations. An oscillatory gliding of non-
varying amplitude at a constant mean height is displayed by 
neutral three-sphere swimmers. For symmetry considerations, 
however, all three types undergo a trivial gliding motion along 
the channel centerline for z0  =  H/2 and θ0 = 0.

We now address the question of whether or not swim-
ming on the channel centerline is a stable dynamical state. 
In order to proceed analytically, we restrict ourselves to the 
neutral swimmer case and assume for simplicity a zero initial 

orientation of the swimmer relative to the horizontal direction. 
By combining equations (15b) and (15c), eliminating the time 
variable and integrating both sides of the resulting equation, 
the orientation of the swimmer is related to the distance along 
the channel via

θ2 = θ2
0 + Q(z, z0 ) , (22)

where the integral function Q(z,z0) is given by

Q(z, z0 ) =

∫ z

z0

2 K (C(u)− C(H − u))
V0 + K (B(u) + B(H − u))

d u.
 

(23)

By evaluating the integral in equation  (23) numerically 
and substituting the result into equation (22), we obtain tra-
jectories in the (θ, z) phase space as plotted in figure  9 for 
z0 = H/2 − ϵ where ε is an arbitrary small distance taken 
here as 0.01. As expected from the state diagram shown in 
figure 3, the trajectory for H  =  2 corresponds to a limit cycle 
around the point with z/H  =  1/2 and θ = 0, indicating the cen-
tral oscillatory gliding motion of the swimmer. In contrast, the 
trajectories are not centered at z/H  =  1/2 anymore if values of 
H are larger than a transition value of about HT ≃ 2.4.

It is appropriate to denote by z̄ the average value of the 
two points intersecting with the horizontal axis z/H. Around 
the channel centerline, the integrand on the right-hand side 
of equation  (23) can be Taylor-expanded around z  =  H/2. 
Integrating the resulting equation between H/2 and H/2 ± λ 
yields

θ2 = c2 λ
2 + c4 λ

4 +O(λ6 ) , (24)

where c2 and c4 are functions of H such that c4  <  0 and c2 
changes sign from negative to positive as the channel height 
H increases beyond the transition height HT. For H > HT, it 
undergoes an oscillatory motion around a mean height

z =
H
2
± 1

2

√
−c2

c4
. (25)
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Figure 9. Trajectory of a neutral three-sphere swimmer in phase 
space, derived from equation (22) for θ0 = 0 and z0 = H/2 − ϵ 
where ϵ = 0.01. The inset shows a log–log plot of the scaled mean 
height relative to the channel centerline at the transition point. 
Arrow heads show the clockwise trajectories of the swimmer in the 
upper phase space.

8 See supporting information at (stacks.iop.org/JPhysCM/30/254004/mme-
dia) for illustrative movies showing the additional swimming states observed 
for puller-type swimmers with r2  =  1. Movie 4 illustrates the lower gliding 
state (z0/H = 0.125, θ0 = 0.2) shown in figure 8(b) for r3  =  1.2 (solid blue 
line). Movie 5 illustrates the upper gliding state (z0/H = 0.3125, θ0 = 0.2) 
shown in figure 8(b) for r3  =  1.2 (dotted orange line). Movie 6 illustrates 
the lower sliding (z0/H = 0.5, θ0 = −0.3 ) for r3  =  2. Movie 7 illustrates the 
upper sliding (z0/H = 0.5, θ0 = 0.3 ) for r3  =  2. For illustrative purposes, 
the sizes of the spheres are not shown in real scale.
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The scaling exponent of the scaled mean height relative to the 
channel centerline about the transition point is readily calcu-
lated from the logarithmic derivative,

dln
∣∣ z

H − 1
2

∣∣
dln (H − HT)

=
1
2

dln
(

1
H

√
− c2

c4

)

dln (H − HT)
−→H→HT

1
2

. (26)

Thus, the bifurcation is of a supercritical pitchfork-type. 
In the inset of figure 9, we show the evolution of 

∣∣ 1
2 − z̄

H

∣∣ as 
a function of H  −  HT to verify the scaling behavior derived 
above around the transition height. An agreement between 
the theoretical value 1/2 and the numerical results is clearly 
manifested.

If the channel height H is further increased, the curve in 
figure 9 will finally intersect with the line z  =  0, indicating 
the trapping of the swimmer. Such a behavior is in accord 
with the emergence of upper/lower trapping scenarios just  
above/below the central point corresponding to the central 
gliding motion in figure  3(b). Nevertheless, we note that a 
quantitative analysis is not available as the inclination angle 
may be large in this case, a situation that is beyond the simpli-
fied analytical theory proposed here.

We further elucidate the validity and reliability of our 
prediction by direct comparison with the numerical solution 
for a neutral swimmer as well as for a puller-type swimmer. 
As above, we also extract z̄ values and observe a bifurcation 
behavior near H ≃ 2.25, as shown in figure 10. For a puller-
type swimmer, z̄ denotes the final height reached by the 
swimmer after the decay of oscillations. Clearly, the bifurca-
tion is of a pitchfork-like type as swimming in the mid-channel 
in the H  <  HT regime (see figure 3(a)) becomes unstable for 
H  >  HT. This corresponds to the appearance of the isolated 
points of central gliding at z0  =  0 and θ0 = 0 in figure 3(b) 
and in figure 7(a). Instead, two new limit cycles emerge for 
a neutral swimmer, indicating the lower/upper oscillatory 

gliding modes of motion. For a puller swimmer, however, 
these new states represent stable fixed points since the oscil-
lations are damped out in the steady limit. We also note that, 
in the case of the three-sphere swimmer of equal sphere 
radii with H  >  3.5, a small perturbation leads to the trapping 
dynamics of the swimmer, as already discussed above. For the 
value of the exponent, however, a slight deviation from the 
theoretical prediction is observed (see the inset). We presume 
that this is most probably due to the approx imations involved 
in our simplistic analytical theory.

5. Conclusions

The dynamics of microswimmers in confined geometries 
reveals qualitatively new behavior due to the anisotropic nature 
of hydrodynamic interactions with boundaries. In this work, 
we characterize the motion of a swimmer in the parallel-wall 
channel geometry, relevant to microfluidic and Hele-Shaw cell 
geometries. As a model swimmer, we choose the well known 
three-sphere model by Najafi and Golestanian [12]. By con-
sidering spheres of different radii, we are able to explore the 
relation between the flow signature of the swimmer (pusher, 
puller, or neutral swimmer) and the observed behavior. For 
each type we determine the phase diagram of possible final 
states as a function of the initial position and orientation of 
the swimmer in the channel. To account for the hydrodynamic 
interactions with the walls, we use the method of reflections 
[114, 121], which leads to good-quality approximations of the 
near-wall self and pair mobility for spheres.

In accord with the previously analyzed dynamics of the 
model swimmer close to a single planar no-slip boundary 
[145], for a neutral swimmer (corresponding to the classical 
design with three identical spheres) we observe three dis-
tinct types of behavior, namely trapping at the wall, escape 
from the wall, and gliding at a specific distance separated 
from the wall, determined by the size of the swimmer and 
in relation to the channel width. Here, we find that the oscil-
latory gliding state can occur both in the central area of the 
channel and closer to one of the walls. We then characterize 
the differences between puller- and pusher-type swimmer. For 
pusher-like swimmers, the oscillatory gliding state is unstable, 
and the evolution involves transient oscillations of growing 
amplitude, finally crossing into trapping in a hovering state at 
one of the walls. This observation within our numerical tests 
seems to be robust with respect to the changing properties of 
the swimmer. Puller-like swimmers, in contrast to that, exhibit 
a strong dependence of their modes of motion on their geo-
metric characteristics. We find persistent gliding states com-
patible with the general puller hydrodynamics, with initial 
oscillations apparently dying out in favor of a steady solution 
at a fixed swimmer-to-wall distance. As the parameters of the 
swimmer are varied, the trapping states can vanish and sliding 
states appear, in which the swimmers translate at a constant 
height with a fixed orientation. We have also investigated ana-
lytically the stability of swimming along the centerline of the 
channel by considering small perturbations around the sym-
metric state. We find that above a critical channel width there 
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Figure 10. The scaled mean vertical position versus the channel 
height H for a neutral (r3  =  1) and puller-type swimmer (r3  =  1.2). 
The system undergoes a supercritical pitchfork bifurcation at 
HT = 2.25. Here r2  =  1 and the swimmer is initially released from 
θ0 = 0 and z0 = H/2 ± ϵ where ϵ = 0.01. Inset: Log–log plot of the 
mean oscillation height (for r3  =  1) and steady gliding height (for 
r3  =  1.2) around the transition point.
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is a pitchfork bifurcation for the motion closer to one of the 
two walls to appear, and we characterized it analytically.

We believe that our findings can be useful for the design 
and understanding of the motion of swimming microrobots 
in confined geometries. Relating the initial position in the 
channel to the final dynamical states is particularly important 
for engineering microfluidic devices to sort or accumulate 
swimmers. The presence of boundaries leads to a variety of 
complex behaviors emerging for the swimmers. Our work 
demonstrates, however, that simple analytical approximations 
can still be profitably used to characterize the dynamics in 
many cases.
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Appendices

In appendix A, we derive the Green’s functions in a channel 
between two no-slip walls using a two-dimensional Fourier 
transform technique. We then describe in appendix B the 
method of reflections and express the Green’s functions in the 
channel in terms of an infinite series of images. In appendix 
C, we provide an overview on the dynamics of a general three-
sphere swimmer in an unbounded fluid domain and show that 
the induced flow far-field can conveniently be described by a 
combination of dipolar and quadrupolar flows. Further math-
ematical details are contained in appendix D.

Appendix A. Green’s functions

In this appendix, we use a two-dimensional Fourier transform 
technique to derive the Green’s functions in a channel between 
two no-slip walls. The solution method consists of reducing 
the partial differential equations (1) into ordinary differ ential 
equations in the direction perpendicular to the walls, whereas 
the spatial dependence of the hydrodynamic fields in the plane 
parallel to the wall are Fourier transformed into the wave-
number domain. Upon inverse Fourier transformation, the 

Green’s functions can conveniently be expressed in terms of 
Bessel integrals of the first kind.

We define the two-dimensional Fourier transform

F{ f (ρ)} =: f̃ (q) =
∫

R2
f (ρ)e−iq·ρ d ρ , (A.1)

together with its inverse transform

F−1 {f̃ (q)} =: f (ρ) =
1

(2 π)2

∫

R2
f̃ (q)eiq·ρ d q , (A.2)

where ρ = (x, y) is the projection of the vector r onto the 
plane z  =  0, and q = (qx, qy) sets the coordinates in Fourier 
space.

It is more convenient to make use of the orthogonal basis 
introduced previously by Bickel [148, 149], in which the 
velocity vector field is decomposed into transverse, longi-
tudinal, and normal components. Accordingly, the Fourier-
transformed components of the velocity field in the Cartesian 
coordinate basis ṽx and ṽy are related to the longitudinal and 
transverse components in the new basis ṽl and ṽt via the 
orthogonal transformation

(
ṽx

ṽy

)
=

1
q

(
q x q y

q y −q x

)(
ṽl

ṽt

)
, (A.3)

wherein q := |q| is the wavenumber. The longitudinal and 
transverse components of the force fl and ft follow forthwith 
using an analogous transformation matrix.

We now assume that the point force is acting inside the 
channel at location r0 = (0, 0, h), where 0  <  h  <  H. Upon 
two-dimensional Fourier transform, equations  (1) governing 
the fluid motion yield ordinary differential equations  in the 
variable z. Specifically [150]

η(−q 2 ṽl + ṽl,zz)− iq p̃ + fl δ(z − h ) = 0 , (A.4)

η(−q 2 ṽt + ṽt,zz) + ft δ(z − h ) = 0 , (A.5)

η(−q 2 ṽz + ṽz,zz)− p̃ ,z + fz δ(z − h ) = 0 , (A.6)

iq ṽl + ṽz,z = 0 , (A.7)

where a comma in a subscript stands for a partial derivative.
The velocity transverse component ṽt can directly be 

obtained by solving equation  (A.5). By combining equa-
tions (A.6) and (A.4), the pressure field can readily be elimi-
nated. As the continuity equation  (A.7) provides a direct 
relation between the longitudinal and normal components, a 
fourth-order ordinary differential equation for ṽz  is obtained, 
namely [148]

ṽz,zzzz − 2 q 2 ṽz,zz + q 4 ṽz =
q 2

η
fz δ(z − h ) +

iq
η

fl δ′(z − h ) ,

 (A.8)
wherein δ′ is the derivative of the Dirac delta function.

The Green’s functions in 2D Fourier space can thus be 
identified from
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⎛

⎝
ṽt

ṽl

ṽz

⎞

⎠ =

⎛

⎜⎝
G̃tt 0 0
0 G̃ll G̃lz

0 G̃zl G̃zz

⎞

⎟⎠

⎛

⎝
ft
fl
fz

⎞

⎠ . (A.9)

In the following, we present an analytical solution for the 
fluid velocity field in the channel by considering the solutions 
for the transverse and normal components independently.

A.1. Transverse velocity

The general solution of equation  (A.5) inside a channel of 
width H can be written as

ṽt = A1 eqz + B1 e−qz , (A.10)

for 0 ! z ! h, and

ṽt = A2 eq(H−z) + B2 e−q(H−z) , (A.11)

for h! z ! H , wherein Aα and Bα, for α ∈ {1, 2}, are 
wavenumber-dependent quantities to be determined from 
the underlying boundary conditions. The no-slip condition 
at the walls yields ṽt(z = 0) = ṽt(z = H) = 0. Additionally, 
the Dirac delta function implies the discontinuity of the first 
derivative at the point-force position. Specifically

ṽt,z|z=h + − ṽt,z|z=h − = − ft
η

, (A.12)

by requiring the natural continuity of the transverse velocity 
at z  =  h.

Solving for the four unknown quantities yields

A1 =
ft

2 qη
sinh (q(H − h ))

sinh(qH)
, (A.13)

A2 =
ft

2 qη
sinh(qh )
sinh(qH)

, (A.14)

with B1 = −A1 and B2 = −A2.

A.2. Normal velocity

The general solution of equation (A.8) for the normal velocity 
is given by

ṽz = (C1 + D1 z)eqz + (E1 + F1 z)e−qz , (A.15)

for 0 ! z ! h, and

ṽz =
(
C2 + D2(H − z)

)
eq(H−z) +

(
E2 + F2(H − z)

)
e−q(H−z)

 (A.16)
for h! z ! H . Here Cα, Dα, Eα, and Fα, α ∈ {1, 2}, are 
unknown wavenumber-dependent functions to be determined 
from the boundary conditions. The no-slip condition at the 
channel walls yields ṽz(z = 0) = ṽz(z = H) = 0. In addition, 
since

ṽl =
i
q

ṽz,z (A.17)

as can be inferred from the continuity equation  (A.7), we 
further require that ṽz,z(z = 0 ) = ṽz,z(z = H) = 0 . Moreover, 

the Dirac delta function implies the discontinuity of the third 
derivative of the normal velocity,

ṽz,zzz|z=h + − ṽz,zzz|z=h − =
q 2 fz
η

, (A.18)

while the derivative of the delta function implies the disconti-
nuity of the second derivative,

ṽz,zz|z=h + − ṽz,zz|z=h − =
iqfl
η

. (A.19)

By requiring the continuity of the normal and longitudinal 
velocities at the point-force position, making use of (A.17), 
and solving the resulting system of eight equations  for the 
unknown quantities, we readily obtain

C1 =
ifl

8 ηqb0

(
S−(−u ,−U)− S+(u , U)

)
− fz

8 ηqb0

(
S−(u , U) + S+(−u ,−U)

)
,

D1 =
1

4 ηb0

(
S−(u , U) fz + iS+(u , U) fl

)
,

E1 = −C1 ,

F1 =
1

4 ηb0

(
S+(−u ,−U) fz − iS−(−u ,−U) fl

)
,

where we have defined the dimensionless quantities

u= qh, U = qH , b0 = 2 + 4 U2 − 2 cosh(2 U) ,

in addition to

S±(x1 , x2 ) = b1 (x1 , x2 )± b2 (x1 , x2 ) , (A.20)

where

b1 (x1 , x2 ) = 2
(
cosh(x1 − 2 x2 )− cosh(x1 )

+ 2 U(u− U) exp(−x1 )
)

,
b2 (x1 , x2 ) = 4 (U sinh(x1 )− uexp(x1 − x2 ) sinh x2 ) .

The wavenumber-dependent functions for the fluid domain 
h! z < H  are obtained as

C2 = −C1 |h→H−h, (A.21)

and analogously for D2, E2, and F2.
Upon inverse Fourier transformation, the Green’s func-

tions can conveniently be written in terms of convergent infi-
nite integrals over the wavenumber q , as [151]

Gxx(r, z0 ) =
1

4 π

∫ ∞

0

(
G̃+(q, z, z0 )J0 (ρq)

+ G̃−(q, z, z0 )J2 (ρq) cos(2 θ)
)

q d q ,
 

(A.22a)

Gyy(r, z0 ) =
1

4 π

∫ ∞

0

(
G̃+(q, z, z0 )J0 (ρq)

− G̃−(q, z, z0 )J2 (ρq) cos(2 θ)
)

q d q ,
 

(A.22b)

Gzz(r, z0 ) =
1

2 π

∫ ∞

0
G̃zz(q, z, z0 )J0 (ρq)q d q (A.22c)

for the diagonal components, and

Gxy(r, z0 ) =
sin(2 θ)

4 π

∫ ∞

0
G̃−(q, z, z0 )J2 (ρq)q d q , (A.23a)
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Grz(r, z0 ) =
i

2 π

∫ ∞

0
G̃lz(q, z, z0 )J1 (ρq)q d q , (A.23b)

Gzr(r, z0 ) =
i

2 π

∫ ∞

0
G̃zl(q , z, z0 )J1 (ρq )q d q (A.23c)

for the off-diagonal components. Here ρ2 := x2 + y2 and 
θ := arctan(y/x) is the polar angle. In addition, Jn denotes the 
Bessel function [152] of the first kind of order n. Moreover,

G̃±(q, z) := G̃tt(q, z)± G̃ll(q, z) .

The components in Cartesian coordinates can be 
obtained from the usual transformation Gxz = Grz cos θ, 
Gyz = Grz sin θ, Gzx = Gzr cos θ, and Gzy = Gzr sin θ. Moreover, 
note that Gyx = Gxy.

Appendix B. Images of a Stokeslet between parallel 
no-slip walls

Here we describe the flow due to a point force in a Stokesian 
liquid between two parallel no-slip boundaries, in terms 
of an infinite series of image reflections. This method is 
complementary to the one developed by Liron and Mochon 
[136], who first gave the Green’s function solution in terms 
of a Hankel transformation. A detailed comparison between 
these two methods is given by Mathijssen et  al [121] for 
Stokeslets and higher order multipoles between a no-slip 
wall and a free surface. Previous studies have also used the 
reflection method to investigate the flow produced by mobile 
colloids [153]. To connect with previous notations in [121], 
we rewrite the Stokes equation (1) into the form

∇P(x)− η∇2 v(x) = f δ(x − y), (B.1)

∇ · v(x) = 0, (B.2)

where the fluid velocity is v(x, t), the pressure field is P(x, t), 
the fluid position is x = (x1 , x2 , x3 ) at time t, and the point 
force density is f δ(x − y) (Stokeslet) that acts on the liquid 
at position y = (y1 , y2 , y3 = h). The velocity field must satisfy 
the no-slip boundary condition, v(x) = 0 at the channel walls 
x3  =  0, H.

In the absence of boundaries, the flow is given by the 
Oseen tensor,

vS
i (x , y, f) = Jij(x , y) fj, (B.3)

Jij(x, y) =
1

8πη

(
δij

r
+

rirj

r3

)
, i, j ∈ {1, 2, 3}, (B.4)

where r = x − y, r = |r|, δij is the Kronecker delta, and 
repeated indices are summed over. The pressure that com-
pletes this solution is P(x , y, f) = Pjfj with Pj = rj/4πr3. 
We now aim to solve the flow in a channel in terms of this 
Oseen tensor and derivatives thereof only, using the method 
reflections.

On the one hand, for the case of only a single boundary 
being present, i.e. H → ∞ in our system, Blake [142] first 
derived the Stokeslet flow in terms of an image system. The 
image is located at the position Y(0 ) = (y1 , y2 ,−y3 ) = M · y, 
where the diagonal mirror matrix is M = diag(1, 1,−1). The 
image tensor is found by applying the reflection operator, B, 
of the ‘Bottom’ wall to the Stokeslet. This operator B(λ) is a 
function of the distance from the wall to the Stokeslet, which 
is λ = y3 here. Hence, we have

Bij(x, Y(0 )) = B Jij(x, y(0 )) , (B.5)

where the Blake solution can then be written in terms of the 
Oseen tensor as

Bij(x, Y(0 ))

= (−δjk + 2 λδk3 ∂̃j + λ2 Mjk∇̃2 )Jik(x, Y(0 ))

= (−δjk + 2 y3 δk3 ∂̃j + y2
3 Mjk∇̃2 )Jik(x, Y(0 )) ,

 

(B.6)

where the derivatives ∂̃j =
∂
∂yj

= Mjl
∂

∂Y(0)
l

 and ∇̃2 = ∂̃l∂̃l are 

with respect to the force position y. The first row of table B1 
lists this tensor Bij(x, Y(0 )) as the first ‘Bottom’ reflection. The 
overall flow field is then given by

vB
i (x, y) =

[
Jij(x, y(0 )) + Bij(x, Y(0 ))

]
fj. (B.7)

On the other hand, if only the top wall is present at x3  =  H, the 
distance from the wall to the Stokeslet is λ = y3 − H  and the 
reflection is located at Y(−1) = (y1, y2, 2H − y3). The image 
tensor is then given by applying the reflection operator, T(λ), 
of the ‘Top’ wall to the Stokeslet,

Tij(x, Y(−1 ))

= T Jij(x, y(0 ))

= (−δjk + 2 λδk3 ∂̃j + λ2 Mjk∇̃2 )Jik(x, Y(−1 ))

= (−δjk − 2 {H − y3 }δk3 ∂̃j

+ {H − y3 }2 Mjk∇̃2 )Jik(x, Y(−1 )) .

 

(B.8)

The second row of table B1 lists this result as the first ‘Top’ 
reflection. The overall flow, given by adding (B.4) and (B.8), 
satisfies the no-slip condition exactly on the top surface.

Next, when there are two parallel plates, one can con-
tinue using the method of images by computing the reflec-
tions of the reflections, and again the reflections of those, in 
order to generate an infinite series of images. Each image 
system consists of Stokeslets and derivatives thereof, thus 
satisfies the Stokes equations, and by adding more reflections 
the boundary conditions on both surfaces will be satisfied 
asymptotically. We first determine the positions of the image 
systems,

y(m) = (y1, y2, y3 − 2mH), m = 0,±1,±2, . . . , (B.9)

Y(m) = (y1, y2,−y3 − 2mH), m = 0,±1,±2, . . . , (B.10)
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where the images at Y(m) are reflected an odd number of 
times and the images at y(m) an even number of times. The 
original Stokeslet is also included here at position y = y(0). 
The resulting series of images is shown in figure B1. Then 
we must determine the functional form of the image ten-
sors, Gij(x, y(m)) and Gij(x, Y(m)). For a given image, this is 
done by replacing all the Oseen tensors Jij in the previous 
image system by the appropriate Blake tensor. The key idea 
is that the newly obtained reflection is again an expression 
in terms of Oseen tensors, and derivatives thereof, which 
can then be replaced again for the next reflection.

To see this, we explicitly consider the second (T) reflec-
tion of the first (B) image (B.6). This upward reflection 
of the image at position Y(0)

3 = −y3, located a distance 
λ = −(H + y3) from the top surface, creates a new image 

at position y(−1)
3 = 2H + y3. Its image tensor is given by 

applying the T operator linearly to all Stokeslets in the image,

Gij(x, y(−1 ))

= T Bij(x, Y(0 ))

= T
(
(−δjk + 2 y3 δk3 ∂̃j + y2

3 Mjk∇̃2 )Jik(x, Y(0 ))
)

= (−δjk + 2 y3 δk3 ∂̃j + y2
3 Mjk∇̃2 )

(
T Jik(x, Y(0 ))

)

= (−δjk + 2 y3 δk3 ∂̃j + y2
3 Mjk∇̃2 )

(
(−δkl − 2 (H + y3 )δl3 Mku ∂̃u

+ (H + y3 )
2 Mkl∇̃2 )Jil(x, y(−1 ))

)
.

 

(B.11)

The replacement rule is listed as the 3rd entry in table  B1 
and the final expression as the 3rd entry in table  B2. This 

Table B1. Recursion relations for the successive image systems of a Stokeslet between two parallel no-slip walls. The first image system 
of the Oseen tensor from reflection at the bottom wall is the Blake tensor, and the second image from reflection at the top interface is the 
mirrored Blake tensor. Subsequent image systems are obtained from further reflection operations with B denoting the ‘bottom’ wall and T 
the ‘top’ wall, that operate linearly on all the Oseen tensor terms Jij of the image system tensor Gij.

(n) Position Replace With

(0) y(0) — Jij(x, y(0 ))
(1) Y(0) B Jij(x, y(0 )) (−δjk + 2 y3 δk3 ∂̃j + y2

3 Mjk∇̃2 )Jik(x, Y(0 ))
(2) Y(−1) T Jij(x, y(0 )) (−δjk − 2 (H − y3 )δk3 ∂̃j + (H − y3 )2 Mjk∇̃2 )Jik(x, Y(−1 ))
(3) y(−1) T Jij(x, Y(0 )) (−δjk − 2 (H + y3 )δk3 Mjl∂̃l + (H + y3 )2 Mjk∇̃2 )Jik(x, y(−1 ))
(4) y(1) B Jij(x, Y(−1 )) (−δjk + 2 (2 H − y3 )δk3 Mjl∂̃l + (2 H − y3 )2 Mjk∇̃2 )Jik(x, y(1 ))
(5) Y(1) B Jij(x, y(−1 )) (−δjk + 2 (2 H + y3 )δk3 ∂̃j + (2 H + y3 )2 Mjk∇̃2 )Jik(x, Y(1 ))
(6) Y(−2) T Jij(x, y(1 )) (−δjk − 2 (3 H − y3 )δk3 ∂̃j + (3 H − y3 )2 Mjk∇̃2 )Jik(x, Y(−2 ))
(7) y(−2) T Jij(x, Y(1 )) (−δjk − 2 (3 H + y3 )δk3 Mjl∂̃l + (3 H + y3 )2 Mjk∇̃2 )Jik(x, y(−2 ))
(8) y(2) B Jij(x, Y(−2 )) (−δjk + 2 (4 H − y3 )δk3 Mjl∂̃l + (4 H − y3 )2 Mjk∇̃2 )Jik(x, y(2 ))
(9) Y(2) B Jij(x, y(−2 )) (−δjk + 2 (4 H + y3 )δk3 ∂̃j + (4 H + y3 )2 Mjk∇̃2 )Jik(x, Y(2 ))
(10) Y(−3) T Jij(x, y(2 )) (−δjk − 2 (5 H − y3 )δk3 ∂̃j + (5 H − y3 )2 Mjk∇̃2 )Jik(x, Y(−3 ))
(11) y(−3) T Jij(x, Y(2 )) (−δjk − 2 (5 H + y3 )δk3 Mjl∂̃l + (5 H + y3 )2 Mjk∇̃2 )Jik(x, y(−3 ))
(12) y(3) B Jij(x, Y(−3 )) (−δjk + 2 (6 H − y3 )δk3 Mjl∂̃l + (6 H − y3 )2 Mjk∇̃2 )Jik(x, y(3 ))
(13) Y(3) B Jij(x, y(−3 )) (−δjk + 2 (6 H + y3 )δk3 ∂̃j + (6 H + y3 )2 Mjk∇̃2 )Jik(x, Y(3 ))
⋮ ⋮ ⋮ ⋮

Y(2) y(2) Y(1) y(1) Y(0) y(0) Y(-1) y(-1) Y(-2) y(-2)

x3

0 Hy3-y3 2H+y3 4H+y3-2H+y3-4H+y3

Figure B1. Diagram showing the image reflections of a Stokeslet, located at y3, between two parallel no-slip walls, located at x3  =  0,H. 
The images reflected an even number of times (circles) are located at y(m)

3 = y3 − 2mH and those reflected an odd number of times (stars) 
are located at Y(m)

3 = −y3 − 2mH .
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expression may be verified by adding (B.6) to (B.11) and 
ascertain that the no-slip condition holds on x3  =  H for all i, j.

Similarly, the higher-order image tensors are found by 
recursively applying the reflection operations,

Gij(x, Y(m)) = B Gij(x, y(−m)) , (B.12)

Gij(x, Y(−m)) = T Gij(x, y(m−1 )) , (B.13)

Gij(x, y(−m)) = T Gij(x, Y(m−1 )) , (B.14)

Gij(x, y(m)) = B Gij(x, Y(−m)) , (B.15)

where m ! 1. These replacement rules are written out for the 
first few images in tables B1 and B2 that give the resulting 
expressions of the image tensors explicitly.

Finally, adding all images together we obtain the Green’s 
function for a Stokeslet between two parallel no-slip surfaces,

vi(x , y, f) = Fijfj , (B.16)

Fij(x, y) =
∞∑

m= −∞

[
Gij(x, y(m)) + Gij(x, Y(m))

]
. (B.17)

Note that the no-slip condition can be satisfied exactly on the 
bottom surface by adding up the reflections to n = 1, 5, 9, 13, . . . 
from table B2, and satisfied exactly on the top surface by adding 
up the reflections to n = 3, 7, 11, 15, . . .. However, if symmetric 
flow fields are required about the channel centerline, an even 
number of images n = 2, 4, 6, 8, . . . must be employed.

Appendix C. Flow far-field of a three-sphere  
swimmer in bulk

In this appendix, we show how the flow far-field of a three-
sphere swimmer can well be described by a combination 

of dipolar and quadrupolar flows. In the particular situation 
of the internal forces symmetrically distributed along the 
swimming axis, the dipolar contribution vanishes since the 
swimmer becomes invariant under time-reversal and parity 
transformation [154]. This type of swimmer is referred to as a 
self-T-dual swimmer whose leading term in the flow-far field 
is a quadrupole.

Firstly, we assume that the spheres have the same radius a 
but different oscillation amplitudes. The flow-far field is given 
by [17]

v =αV
(a

s

)2 (
3
(̂
t · ŝ
)2 − 1

)
ŝ

+ σV
(a

s

)3
[

3
(

5
(̂
t · ŝ
)3 − 3

(̂
t · ŝ
))

ŝ

−
(

3
(̂
t · ŝ
)2 − 1

)
t̂
]
+O

(
1
s4

)
,

 

(C.1)

where the unit vector ŝ := s/s and the leading order swim-
ming velocity averaged over one period is V = − 7

24 aK . In 
addition, the dipolar and quadrupolar coefficients are given by

α =
27
56

u2
20 − u2

10
a

, σ =
15
56

1
a2 . (C.2)

While the quadrupolar coefficient takes only posi-
tive values, the dipolar coefficient can be of different signs 
depending on the difference in the amplitude of the oscil-
lations. If |u20| > |u10|, then the dipole coefficient is posi-
tive, α > 0, and thus the swimmer is a pusher that pushes 
out the fluid along its swimming axis. In contrast to that, 
if |u20| < |u10|, the swimmer is a puller as it pulls the fluid 
inward along its swimming path.

It is worth noting that the aforementioned assump-
tion 2a+ |u10|+ |u20| ≪ L yields that α is necessarily 
much smaller than σ. Accordingly, the ratio between the 

Table B2. Explicit expressions of the image system tensors Gij of the first few image systems of a Stokeslet between two parallel no-slip 
walls. The indices i, j, k, l, o , p , u , v ∈ {1, 2, 3}, and repeated indices are summed over. Added together, these tensors yield the Green’s 
function of flow between two parallel no-slip walls.

(n) Image system tensor Gij(x, y(m) or Y(m)) =

(0) Jij(x, y(0 ))
(1) (−δjk + 2 y3 δk3 ∂̃j + y2

3 Mjk∇̃2 )Jik(x, Y(0 ))
(2) (−δjk − 2 (H − y3 )δk3 ∂̃j + (H − y3 )2 Mjk∇̃2 )Jik(x, Y(−1 ))
(3) (−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2) (−δkl − 2 (H + y3 )δl3 Mku ∂̃u + (H + y3 )2 Mkl∇̃2 )Jil(x, y(−1 ))
(4) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)2 Mjk∇̃2) (−δkl + 2 (2 H − y3 )δl3 Mku ∂̃u + (2 H − y3 )2 Mkl∇̃2 )Jil(x, y(1 ))
(5) (−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2) (−δkl − 2(H + y3)δl3 Mku ∂̃u + (H + y3)2 Mkl∇̃2)

(−δlo+ 2 (2 H + y3 )δo3 ∂̃l + (2 H + y3 )2 Mlo∇̃2 )Jio(x, Y(1 ))
(6) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)2 Mjk∇̃2) (−δkl + 2(2H − y3)δl3 Mku ∂̃u + (2H − y3)2 Mkl∇̃2)

(−δlo− 2 (3 H − y3 )δo3 ∂̃l + (3 H − y3 )2 Mlo∇̃2 )Jio(x, Y(−2 ))
(7) (−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2) (−δkl − 2(H + y3)δl3 Mku ∂̃u + (H + y3)2 Mkl∇̃2)

(−δlo+ 2(2H + y3)δo3∂̃l + (2H + y3)2 Mlo∇̃2) 
(−δop− 2 (3 H + y3 )δp3 Mov∂̃v + (3 H + y3 )2 Mop∇̃2 )Jip(x, y(−2 ))

(8) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)2 Mjk∇̃2) (−δkl + 2(2H − y3)δl3 Mku ∂̃u + (2H − y3)2 Mkl∇̃2)

(−δlo− 2(3H − y3)δo3∂̃l + (3H − y3)2 Mlo∇̃2) 
(−δop+ 2 (4 H − y3 )δp3 Mov∂̃v + (4 H − y3 )2 Mop∇̃2 )Jip(x, y(2 ))

⋮ ⋮
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dipolar and quadrupolar coefficients in absolute value 
|α/σ| = 9

5 a|u2
20 − u2

10| can be even three orders of magni-
tude smaller than 1. For instance, by taking u10  =  a  =  0.1 
and u20 = 2u10, the ratio |α/σ| = 5.4 × 10−3. Even though 
the dipolar term persists for u10 ̸= u20, the flow field is primly 
dominated by the quadrupolar contribution, at intermediate 
distances from the swimmer.

We next assume that u10 = u20 and consider the case in 
which the spheres have different sizes, as is considered in the 
present work. The swimming velocity averaged over one full 
cycle reads [14]

V = −21 K
8

a1 a2a3

(a1 + a2 + a3 )
2 . (C.3)

In addition, the dipolar and quadrupolar coefficients of the 
corresponding flow field are given by

α =
3
4

a2 − a3

a2 , σ =
3
56

4 (a2 + a3 )− 3 a
a3 , (C.4)

where a is taken as the radius of the central sphere a1. 
Remarkably, the swimmer is a pusher (puller) if a2 > a3 
(a2 < a3), independently of the central sphere a. In addition, 
if a < 4

3 (a2 + a3), then the quadrupolar coefficient is posi-
tive, σ > 0, a situation which characterizes swimmers with 
small bodies and elongated flagella. The flow far-field of the 
swimmer can be dipolar- or quadrupolar-dominated at inter-
mediate distances from the swimmer, depending on the sizes 
of the spheres.

We finally assess the effect of the mean arm lengths on 
the far-field hydrodynamics. By posing L2 = βL1 = L and 
scaling the lengths by L, the averaged swimming velocity is 
given by [14]

V = −aK
6

(
1 +

1
β 2 − 1

(1 + β)2

)
, (C.5)

and the dipolar and quadrupolar moments follow as

α =
3
8 a

Nα

D
(1 − β) , σ =

3
16 a2

Nσ

D
, (C.6)

where we have defined for convenience the quantities

Nα = β
(
2 + 7 β + 11β 2 + 7 β 3 + 2 β 4 ) ,

Nσ = β
(
2 + 4 β + β 2 − 4 β 3 + β 4 + 4 β 5 + 2 β 6 ) ,

D = 1 + 2 β + β 2 + 2 β 3 + β 4 .

The swimmer is a pusher (puller) if β < 1 (β > 1). 
Moreover, σ > 0 for all positive values of the parameter β.

Appendix D. Mathematical formulas

In this appendix, we provide explicit analytical expressions of 
the functions and coefficients stated in the main text.

D.1. Expressions of A(z), B(z) and C(z) for a neutral  
swimmer (equal sphere radii)

Here we provide explicit analytical expressions of the func-
tions A(z), B(z), and C(z) defined in equation (10) of the main 
text, to leading order in a and as a power series in z. Defining 
w1 :=

√
1 + z2  and w2 :=

√
1 + 4z4 , we have

A(z) =
a

(w1w2 )13

12∑

n=0

A2 nz2 n , (D.1a)

B(z) =
a

(w1w2 )7

12∑

n=−1

Bnzn , (D.1b)

Table D1. The coefficients An, Bn and Cn of the series 
functions defined in equations (D.1). Here w1 :=

√
1 + z2  and 

w2 :=
√

1 + 4z4 .

A0
7
24 − 7

24 w2w1 − w2
24 + w1

3
A2 − 35

4 w2w1 − 13
12 w2 +

14
3 w1

A4 − 931
8 w2w1 − 1159

96 w2 +
91
3 w1

A6 − 5425
6 w2w1 − 2407

32 w2 + 172 w1
A8 − 364 35

8 w2w1 − 9203
32 w2 + 977 w1

A10 − 624 75
4 w2w1 − 225 97

32 w2 + 4042 w1
A12 − 298 445

8 w2w1 − 4721
4 w2 + 105 67 w1

A14 −624 75 w2w1 − 3107
2 w2 + 173 12 w1

A16 −728 70 w2w1 − 1904 w2 + 178 12 w1
A18 − 173 600

3 w2w1 − 5768
3 w2 +

336 16
3 w1

A20 −297 92 w2w1 − 3520
3 w2 +

118 40
3 w1

A22 −8960 w2w1 − 896
3 w2 +

1792
3 w1

A24 − 3584
3 w2w1

B−1
3
32 w2w1

B0 7
24 − 7

24 w2w1 − w2
24 + w1

3
B1 45

32 w2w1
B2 − 35

8 w2w1 − 89
96 w2 +

8
3 w1

B3 261
32 w2w1

B4 − 203
8 w2w1 − 175

24 w2 +
82
3 w1

B5 735
32 w2w1

B6 − 1715
24 w2w1 − 2425

96 w2 +
208

3 w1
B7 261

8 w2w1
B8 − 203

2 w2w1 − 875
24 w2 +

197
3 w1

B9 45
2 w2w1

B10 −70 w2w1 − 91
6 w2 +

64
3 w1

B11 6 w2w1
B12 − 56

3 w2w1 − 6w2

C3 3
16 w2 − 6 w1

C5 321
64 w2 − 102 w1

C7 3699
64 w2 − 702 w1

C9 239 31
64 w2 − 2502 w1

C11 948 69
64 w2 − 4842 w1

C13 294 57
8 w2 − 4482 w1

C15 224 19
4 w2 + 198 w1

C17 4824 w2 + 4878 w1
C19 1836 w2 + 4968 w1
C21 −96 w2 + 2208 w1
C23 −192 w2 + 384 w1
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C(z) =
a

(w1w2 )13

11∑

n=1

C2 n+1z2 n+1 . (D.1c)

The series coefficients An, Bn, and Cn are given in table D1.

D.2. Analytical expressions for a general three-sphere  
swimmer in the far-field limit

The explicit analytical expression of the coefficients V10 and 
V20 defined in equation (18) are

V10 = −21PK
8 M2 , V20 =

9 PK (18 − 27 S− 6 P + 11Q)

32M3 .

The coefficients Aij, Bij, Cij, and Dij defined in equa-
tions (19) and (20) are given by

A23 = −63P (9 + 25S+ 88P − 12Q)

1024M3 ,

D14 =
135P
64MN

,

D22 = − 189 P
256M2 ,

D24 =
135P

(
85Q − 18S+ 542PS+ 140P + 640P2

)

2048M2N2 ,

B13 =
63P
64M

,

B23 = −63P (9 − 6PS− 3Q + 13S+ 16P)
256M3 ,

C14 =
405P
256N

,

C24 =
405P (10P + 13S)

2048MN
,

where S = r3 + r2, P = r3r2, Q = r2
3 + r2

2 , M  =  1  +  S and 
N  =  S  +  4P. We recall that r2 = a2/a1 and r3 = a3/a1.
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