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5 Stochastic processes and their description

We will now define stochastic processes and discuss their properties and methods of describ-

ing them. First, we consider a random variable X and a real parameter t. For convenience,

we will refer to t as time, but this can be a di↵erent variable relevant to the process at

hand. We define a family of random variables Y , generated by a mapping f such that

Y (t) = YX(t) = f(X, t). (5.1)

We will call Y (t) a random function or a stochastic process. If the value of the parameter

t = t0 is fixed, then Y (X, t0) is a random variable. If a particular realisation of X is chosen,

x 2 X, then Y (x, t) = f(x, t) is a trajectory or realisation of the process. Thus, a stochastic

process may be regarded as an ensemble of its realisations.

The main question in this Chapter will be – How can we describe such an ensemble?

How can we characterise a stochastic process? We will present four di↵erent approaches

below.

The underlying distribution The first case is a convenient situation when we know the

mapping f and the distribution ⇢(x) of the underlying random variable X. Then we know

everything about the process and any quantity can be calculated directly. It is, however, a

rare possibility in the context of natural sciences, where we typically have access to some

observables of a process.

Averages of the process The second scenario is that we know the averages, and gen-

erally moments of the distribution of Y . The basic quantity is the mean

hY (t)i =

Z
YX(t)⇢(x)dx =

Z
f(x, t)⇢(x)dx, (5.2)

and higher-order moments, defined as

hY (t1) · · ·Y (tn)i =

Z
f(x, t1) · · · f(x, tn)dx. (5.3)

Out of those, particularly important is the two-point average, called the autocorrelation

function (t1, t2), defined as

(t1, t2) = hhY (t1)Y (t2)ii = hY (t1)Y (t2)i � hY (t1)i hY (t2)i , (5.4)

where the double brackets hh·ii denote average of the quantity shifted by its mean. Note

that (t1, t2) = (t2, t1). For t1 = t2, autocorrelation function reduces to the variance,
⌦⌦
Y 2(t)

↵↵
= �2(t). (5.5)
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The hierarchy of distribution functions Assume that we describe the trajectory of

a stochastic process by measuring the probability of the trajectories passing through a

number of gates’ placed at r points in the (y, t) space. In other words, we are looking for

the probability that at time ti the value of the process was between yi and yi + dyi, with

i = 1, 2, . . . , r. The probability of such an event can be written using the joint probability

distribution

Pr(y1, t1; . . . ; yr, tr)dy1 · · · dyr. (5.6)

We can relate this probability distribution to the underlying distribution for the variable

X by writing it as an average using Eq. (2.45). Thus it reads

Pr(y1, t1; . . . ; yr, tr) = h�(y1 � f(x, t1)) · · · �(yr � f(x, tr)iX , (5.7)

where the last average is calculated w.r.t. the density ⇢(X). We can now write the averages,

such as that in Eq. (5.3), as

hY (t1) · · ·Y (tn)i =

Z
y1 · · · yrPr(y1, t1; . . . ; yr, tr)dy1 · · · dyr. (5.8)

The hierarchy of joint probability distributions,

{P1, P2, P3, . . .} ,

can thus be used to calculate all possible averages. These functions have to satisfy four

consistency conditions, holding for all n

(a) Pn � 0,

(b) Pn does not change on swapping two pairs (yk, tk) and (yl, tl),

(c)
R
Pr(y1, t1; . . . ; yr, tr)dyr = Pr�1(y1, t1; . . . ; yr�1, tr�1),

(d)
R
P1(y1, t1)dy1 = 1.

Kolmogorov showed that a set of functions satisfying (a)-(d) is a complete specification of

a stochastic process. In fact, it is over-complete, since we can omit any finite number of

Pm without losing information, as they can always be recovered from higher distributions

thanks to the property (c).

Conditional distributions Imagine now that we take a di↵erent approach and look only

at trajectories which passed through the point (y1, t1). The probability that a realisation

of the process takes the value of y2 at t2, given that its value at t1 was y1, is described by

the conditional probability distribution

P1|1(y2, t2|y1, t1)dy2. (5.9)

To compute it, we select from the ensemble of trajectories a sub-ensemble of only those

that pass through y1 at t1. The fraction of the sub-ensemble that passes through y2 at t2
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is given exactly by Eq. (5.9). Clearly, if we sum over all possible targets, we count in all

the trajectories of the sub-ensemble, so
Z

P1|1(y2, t2|y1, t1)dy2 = 1. (5.10)

More generally, we can specify more conditions and more targets, leading to multidimen-

sional conditional distributions, defined by

Pr|k(yk+1, tk+1; . . . ; yr+k, tr+k|y1, t1; . . . ; yk, tk) =
Pr+k(y1, t1; . . . ; yr+k, tr+k)

Pk(y1, t1; . . . ; yk, tk)
, (5.11)

for which an elegant interpretation is that the joint probability of being at points (y1, t1; . . . ; yr+k, tr+k)

is the probability of being at points (y1, t1; . . . ; yr, tr) given that we were at points (yr+1, tr+1; . . . ; yr+k, tr+k)

times the probability of being at these points, so simply Pr+k = Pr|kPk. In particular, for

r = 1 we get

Pk+1(y1, t1; . . . ; yk+1, tk+1) = P1|k(yk+1, tk+1|y1, t1; . . . ; yk, tk)Pk(y1, t1; . . . ; yk, tk), (5.12)

from which we see that if we know the set

�
P1, P1|1, P1|2, . . .

 

so all subsequent conditional probabilities P1|k, we can again fully describe a stochastic

process. The interpretation is the following – all we need to know is to consider one ’gate’

and values of the process at specific points.

For further considerations, we will also need to define a stationary process that is one

not a↵ected by a shift of time. For such a process, for any ⌧ we have

hY (t1 + ⌧) · · ·Y (tn + ⌧)i = hY (t1) · · ·Y (tn)i . (5.13)

In particular, it follows that for a stationary process

hY (t)i = const, (5.14)

is time-independent, and the correlation function

(t1, t2) = (t1 � t2) = (|t1 � t2|), (5.15)

where the last equality follows from the symmetry (t) = (�t). In a typical situation

the autocorrelation function of a stationary process decays with time, so there exists a

characteristic time ⌧c, called the correlation time, such that for t > ⌧c we have (t) ⇡ 0.

Thus, for times t � ⌧c two random variables Y (X, t1) and Y (X, t1 + ⌧c) are uncorrelated

(but not independent).
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