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1 Introduction and discrete probability distributions

1.1 Propagation of rare diseases

We inherit a copy of each gene from each parent. Those copies are called alleles. In the

simplest case we can imagine that alleles can be in two variants. We could say 1 and 0 or

1 and �1. In biology we usually say dominant and recessive. As an example let’s denote

A the dominant allele and a the recessive one. For such gene, in human population we can

distinguish 3 genotypes: those with both dominant alleles AA, those with one copy of a

recessive gene Aa, and those with two copies of a recessive gene aa.

Imagine now, that this gene is related to some rare genetic disease, in the sense that

only people with both recessive genes are sick. The question is: how abundant such disease

could be in the population?

We assume that each parent gives one of the alleles with equal probability. Let us see

how the genes and the disease propagate in one generation. We can make a table

M / F AA Aa aa

AA AA(1) AA(1/2), Aa(1/2) Aa(1)

Aa AA(1/2), Aa(1/2) AA(1/4), Aa(1/2), aa(1/4) Aa(1/2), aa(1/2)

aa Aa(1) Aa(1/2), aa(1/2) aa(1)

Table 1. Possible combinations of genes in an o↵spring

With the help of this table we could compute the probability of a rare disease in a

child knowing the genes of parents. But we are interested in the whole population. We

have a population of N people with Np, Nq and Nr of them having exactly AA, Aa and

aa genes. Obviously Np +Nq +Nr = N . It’s convenient to introduce relative abundances

p = Np/N , 2q = Nq/N and r = Nr/N such that p+ 2q + r = 1.

Relative abundances have a probabilistic meaning. If we draw a random person from

the population, it would have the AA genotype with probability p and similarly for other

genotypes.
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With the help of the table, let us write the relative abundances in the next generation

assuming that initially we have p0, q0 and r0. We have

p1 = p20 + 2p0q0 + q20 = (p0 + q0)
2, (1.1)

2q1 = 2p0q0 + 2p0r0 + 2q20 + 2q0r0 = 2(p0 + q0)(r0 + q0), (1.2)

r1 = q20 + 2q0r0 + r20 = (r0 + q0)
2. (1.3)

This set of equations determines relative abundances in the first generation starting from

the zeroth generation. What about further generations? We get a recursive relation in

which generation (n+ 1) is obtained from the knowledge of the nth-generation

pn+1 = (pn + qn)
2, (1.4)

qn+1 = (pn + qn)(rn + qn), (1.5)

rn+1 = (rn + qn)
2, (1.6)

given the initial data (p0, q0, r0). We observe that this process does not depend on its past

only on its current state. Such processes are called Markovian or Markov process after a

Russian mathematician Andrey Markov (1856–1922).

In principle we could now try to solve this recursive problem. Problems of such type

can be di�cult or even impossible to solve exactly. However we might not need the full

solution to answer our question. Recall, that the question is: how abundant are such rare

diseases? Essentially we would like to know if we start with non-zero r0 will the evolution

(in the sense of time evolution, not biological) lead to r0 = 0 or not? One way of addressing

this problem is by looking at stationary solutions.

A stationary solution is a choice of (ps, qs, rs) such that they do not change under the

evolution. Therefore, they obey

ps = (ps + qs)
2, (1.7)

qs = (ps + qs)(rs + qs), (1.8)

rs = (rs + qs)
2. (1.9)

The solution is psrs = q2s . From the stationary solution we learn that rs 6= 0 as long as

qs 6= 0. We see that there are stationary solutions with the disease present, despite its

”rareness”.

An interesting question is how quickly the system approaches the stationary state. By

looking at equations for p1, q1 and r1 we see that q21 = p1r1. Therefore it takes just one

step. This simple solution allows us to express the stationary state through the initial data.

We find

ps = (p0 + q0)
2, (1.10)

qs = 2(p0 + q0)(r0 + q0), (1.11)

rs = (r0 + q0)
2. (1.12)

Therefore, it is enough to have a small presence of allele a in the population for the disease

to persist.
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1.2 Di�culties with probabilities

To illustrate some of the challenges with using probabilistic thinking, we consider two

problems.

1) Imagine that you have to make a yes/no decision and you would like to make it

random and fair. You have a coin, but you don’t know if the coin is fair. What’s the

procedure (algorithm) to make a fair decision with such coin?

2) Imagine that there are two boxes with numbered balls. One contains balls numbered

from 1 to 10, the other contains balls numbered from 1 to 1000. Someone gives you a ball

with number 7. What is the probability that it came from the second box?

This second example is used as an illustration of a doomsday argument. The argument

goes like this (according to https://what-if.xkcd.com/65/):

Humans will go extinct someday. Suppose that, after this happens, aliens

somehow revive all humans who have ever lived. They list us in order of birth

and number us from 1 to N. Then they divide us into three groups, the first

5%, the middle 90%, and the last 5%:

Now imagine the aliens ask each human (who doesn’t know how many people

lived after their time), ”Which group do you think you’re in?”

Most of them probably would not speak English, and those who did would

probably have an awful lot of questions of their own. But if for some reason

every human answered ”I’m in the middle group”, 90% of them will (obviously)

be right. This is true no matter how big N is.

Therefore, the argument goes, we should assume that we are in the middle 90%

of humans. Given that there have been a little over 100 billion humans so far,

we should be able to assume with 95% probability that N is less than 2.2 trillion

humans. If it is not, it means we are assuming we are in 5% of humans—and if

all humans made that assumption, most of them would be wrong.

To put it more simply: Out of all people who will ever live, we should probably

assume we are somewhere in the middle; after all, most people are.

If our population levels out around 9 billion, this suggests that humans will

probably go extinct in about 800 years, and not more than 16,000.

1.3 Probabilites

Let us now formalise the concepts that we used in the previous section. To talk about

probability we need two ingredients and one condition

1. We need a sample space ⌦ that is a set of all possible elementary outcomes. In the pre-

vious example the sample space were possible genotypes and ⌦ = {”AA”, ”Aa”, ”aa”}.

2. With each element of the sample space we associate a number between [0, 1]. In the

previous example, these numbers are p, 2q and r. This number we call probability that

some random event happens. For example, p was the probability that a randomly

selected person in the population had a genotype AA.
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3. Finally, since the sample space covers all possible outcomes the respective probabilties

must sum up to 1. Hence p+2q+ r = 1, which we should read that randomly drawn

person will have (with probability 1) a genotype AA or Aa or aa.

We often denote probabilities p(X) where X 2 ⌦. We then write

X

X2⌦
p(X) = 1. (1.13)

We can also talk about probabilities of events composed of elementary events. For

example, probability that someone has genotype ”AA” or ”Aa” is p+ 2q. This leads to a

definition of the set S, which is a set of all possible subsets of ⌦. To an element A of S we

associate probability

P (A) =
X

X2A
P (X). (1.14)

The collection of probabilities associated with all elementary events will be called the

probability distribution, pi = P (Xi). The knowledge of the entire probability distribution

is often too detailed and instead we characterise the distribution, e.g. by its expected

(mean) value µ – the most probable result of an experiment – and variance �, the expected

probable deviations from the mean. They are defined as

µ = hXi = X̄ =
X

i

xipi, (1.15)

�2 = h(X � hXi)2i =
X

i

(xi � hxi)2pi. (1.16)

One can further characterise the distribution by calculating the so-called higher moments

of the distribution

hxki =
X

i

xki pi. (1.17)

In case of a discrete random variable its distribution is fully characterised by their moments.

From (1.14) follows two rules

• The probability of not A, that is probability of complement Ac of A is

P (Ac) = 1 � P (A). (1.18)

• The probability of A or B occurring, denoted P (A [ B) is

P (A [ B) = P (A) + P (B) � P (A \ B). (1.19)

We also define two events to be independent if P (A \ B) = P (A)P (B).
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1.4 Conditional probability

Conditional probability, denoted P (X|Y ) is a probability of an event X knowing that event

Y is true. For example, you throw a dice an the result is even. What is the probability

that the result is 4?

The conditional probability obeys an important relation, the law of total probability

P (X) =
X

Y 2Part(⌦)

P (X|Y )P (Y ), (1.20)

where Part(⌦) is some partition of the sample space ⌦. In the dice example it was a

partition into odd and even results.

Let’s interpret now P (X|Y )P (Y ). It’s a probability that X happens given that Y

happened multiplied by a probability that Y happens. So this is a probability that both

X and Y happen, also denoted P (X \ Y ). We can write

P (X \ Y ) = P (X|Y )P (Y ). (1.21)

The Bayes’ theorem theorem is an observation that the left hand side is symmetric in X

and Y . Therefore

P (X|Y )P (Y ) = P (Y |X)P (X), (1.22)

usually stated as

P (Y ) =
P (Y |X)P (X)

P (X|Y )
. (1.23)

Note that if X and Y are independent then P (X|Y ) = P (X).

Let us see how the Bayes’ theorem works in practice. We stick to genetic diseases and

we assume take that 1% of people have a certain genetic disease and that there is a test

that detects it with 90% of accuracy (true positive). There is also 5% chance that the

test is wrong (false positive). Given that the test is positive what are the chances of the

disease?

Let’s denote by A chance of having a gene defect and by B a chance of positive test.

We want to know P (A|B). Using the Bayes theorem we write

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ā)P (Ā)

=
0.9 · 0.01

0.9 · 0.01 + 0.05 · 0.99
⇡ 15%. (1.24)

Monty Hall problem

Following Wikipedia (https://en.wikipedia.org/wiki/Monty_Hall_problem): Suppose

you’re on a game show, and you’re given the choice of three doors: Behind one door is a

car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what’s

behind the doors, opens another door, say No. 3, which has a goat. He then says to you,

”Do you want to pick door No. 2?” Is it to your advantage to switch your choice?
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1.5 Benford’s first-digit law

Frank Benford 1938 [1]

https://en.wikipedia.org/wiki/Benford’s_law, https://pdodds.w3.uvm.edu/files/

papers/others/1881/newcomb1881a.pdf Simon Newcomb [2]

1.6 Exercises

Sample space

• Two letters are chosen randomly from the word ”dog”. Write down the sample space.

• A random letter is chosen from the word ”physics”. Is the set {p, h, s, c, vowel} a

possible sample space?

Probabilities

• The following information is known about the three events A, B and C:

P (A) =
1

3
, P (B) =

1

4
, P (C) =

1

2
,

P (A [ B [ C) = 1, P (A \ C) = 0, P (B \ C) = 0.

Which two events are independent?

• Suppose there are four measurements of some quantity with the result 1, 2, 3 and

4. Write down all the permutations of this set and for each permutation write down

the number of turning points. If all permutations are equally likely, what is the

probability distribution of the number of turning points.

A turning point of a time series is a point which is the least or the greatest among

itself and the two neighbours.

Bayesian inference

• In manufacturing of a certain article defects of two kinds appear with probabilities 0.1

and 0.05 respectively. We assume that occurrences of the two defects are independent

from each other. What is the probability that:

– an article does not have both kinds of defects at the same time?

– an article is defective?

– an article has only one type of defect, given that it is defective?

– 7 –

https://en.wikipedia.org/wiki/Benford's_law
https://pdodds.w3.uvm.edu/files/papers/others/1881/newcomb1881a.pdf
https://pdodds.w3.uvm.edu/files/papers/others/1881/newcomb1881a.pdf

