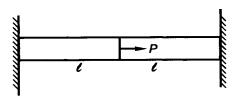

## Hydrodynamics and Elasticity 2025/2026


## Sheet 3

One of the problems will be handed in and marked.

**Problem 1** A rod, the cross section of which slightly varies along its length, is suspended in a vertical plane, under the action of gravity and a force P uniformly distributed over the lower cross section  $S_0$ . What shape S(x) should the rod be for the tensile stress  $T_{xx}$  to be identical in every cross section? Assume that  $T_{xx}$  is the only nonzero component of the stress tensor.



**Problem 2** A composite rod, formed by welding two slender bars of equal length and diameter, is loaded by an axial force P as shown in the figure. If Young's moduli of the two portions are  $E_1$  i  $E_2$  find how the applied force is distributed between the two halves. The external walls are stiff and they do not deform.



**Problem 3** Consider a cylindrical rod that is acted upon by an axial stress  $T_{11} = -P$ . What will be the state of stress in the rod if the lateral surface is constrained so that there is no contraction or expansion? Show that the effective Young's modulus  $(E_Y)_{eff} = T_{11}/E_{11}$  is equal to

$$(E_Y)_{eff} = E_Y \frac{(1-\nu)}{(1-2\nu)(1+\nu)},$$

where  $\nu$  is the Poisson ratio.

Rafał Błaszkiewicz, Maciej Lisicki, Piotr Szymczak