Hydrodynamics and Elasticity Test I, Problem 2

A cylider of radius R and infinite length is rotating about its axis (z) with a constant angular velocity ω . The material of the cylinder has the density ρ_0 and is characterised by Lamé constants λ and μ .

- (a) Derive the formula for the divergence of the deformation field $u_r(r)$, where r is the radius in cylindrical coordinates.
- (b) Find the deformation field assuming that the outer wall of the cylinder is stress-free. Find the distribution of stresses arising from the rotation.
- (c) Interpret the obtained components of the strain tensor. Is the material of the cylidner stretched or compressed in the radial direction (i.e. along e_r)? Is there a point at which the material is neither stretched, nor compressed?
- (d) If the cylinder is rotating fast enough, the resulting stresses may lead to the material breaking. If this is the case, where can we expect a crack to appear?

(a) The force density is given by $\mathbf{f} = \rho_0 \omega^2 r \mathbf{e}_r$. From symmetry, we infer that the cylinder undergoes purely radial deformation

$$\boldsymbol{u} = u_r(r)\boldsymbol{e}_r \tag{1}$$

As discussed in classes, the divergence reads then $\nabla \cdot \boldsymbol{u} = \frac{1}{r} \frac{\partial}{\partial r} (r u_r)$. (b) In classes we found the Navier equation for this particular form of deformation, and in the presence of a radial body force density f_r it takes the form

$$(\lambda + 2\mu) \frac{\mathrm{d}}{\mathrm{d}r} \left[\frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} (ru_r) \right] = -\rho_0 f_r \tag{2}$$

In the non-inertial frame of the cylinder, we have the centrifugal force $f_r = \omega^2 r$. Thus the Navier equation becomes

$$\frac{\mathrm{d}}{\mathrm{d}r} \left[\frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} (r u_r) \right] = -\frac{\rho_0 \omega^2}{\lambda + 2\mu} r \tag{3}$$

We find the general form of deformation by integration

$$u_r = Ar + \frac{B}{r} - \frac{\rho_0 \omega^2}{8(\lambda + 2\mu)} r^3. \tag{4}$$

Using the technique discussed in classes, we find the form of the strain tensor \hat{E} . Its only non-vanishing components are

$$E_{rr} = \frac{\mathrm{d}u_r}{\mathrm{d}r} = A - \frac{B}{r^2} - \frac{3\rho_0\omega^2}{8(\lambda + 2\mu)}r^2, \qquad E_{\varphi\varphi} = \frac{u_r}{r} = A + \frac{B}{r^2} - \frac{\rho_0\omega^2}{8(\lambda + 2\mu)}r^2. \tag{5}$$

Using Hooke's law

$$\widehat{T} = 2\mu \widehat{E} + \lambda (\text{Tr}\widehat{E})\mathbf{1},\tag{6}$$

we find the non-vanishing components of the stress tensor

$$T_{rr} = (\lambda + 2\mu) \frac{\partial u_r}{\partial r} + \lambda \frac{u_r}{r}, \qquad T_{\varphi\varphi} = (\lambda + 2\mu) \frac{u_r}{r} + \lambda \frac{\mathrm{d}u_r}{\mathrm{d}r}, \qquad T_{zz} = \lambda \left(\frac{u_r}{r} + \frac{\mathrm{d}u_r}{\mathrm{d}r}\right). \tag{7}$$

Since the deformation has to be finite at r=0, we find B=0. We need to determine A, for which we require the stress-free condition at the outer surface of the cylinder:

$$T_{rr}|_{r=R} = 0.$$
 (8)

This determines the constant A, so the final solution reads:

$$u_r(r) = \frac{1}{8} \frac{\rho_0 \omega^2 R^2}{\lambda + 2\mu} r \left(\frac{3\mu + 2\lambda}{\mu + \lambda} - \frac{r^2}{R^2} \right). \tag{9}$$

From that we find the components of \widehat{E} :

$$E_{rr} = \frac{1}{8} \frac{\rho_0 \omega^2 R^2}{\lambda + 2\mu} \left[\frac{3\mu + 2\lambda}{\mu + \lambda} - 3\frac{r^2}{R^2} \right], \qquad E_{\varphi\varphi} = \frac{1}{8} \frac{\rho_0 \omega^2 R^2}{\lambda + 2\mu} \left(\frac{3\mu + 2\lambda}{\mu + \lambda} - \frac{r^2}{R^2} \right). \tag{10}$$

- (c) From the analysis of E_{rr} we see that for $r < x = R\sqrt{\frac{1}{3}\frac{3\mu+2\lambda}{\mu+\lambda}}$ the material is stretched $(E_{rr} > 0)$, for r > x the material is compressed, and at r = x it is neither stretched, nor compressed in this direction. But $E_{\varphi\varphi} > 0$, so the material is stretched in the azimuthal direction.
- (d) At r=0 the stresses are maximal, so this is where a crack would first appear.